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Abstract— We proposeda genetic algorithm (GA) approach
to solve the genomesequencingproblem. The main contribution
of this work is to add two ideasto impr ove the efficiency of the
algorithm - (1) a ChromosomeReduction Step (CRed) method
to shortenthe length of the chromosomeand thereby the search-
space,and (2) ChromosomeRefinementStep (CRef) is a greedy
heuristics to locally improve the fitness of chromosomes.The
algorithm will bring out longer and longer contigs with shorter
and shorter gaps, as it continues running. At any stage the
user can view the result, stop it when the output sewves her/his
purpose, or continue for getting longer contigs. We ran the
proposedalgorithm on part of the Wblbachia project work, and
compared the results.

|. INTRODUCTION

At presentmary researctgroupsarededicatedo analyze
genomesof various living objects, and DNA sequencing
of the whole genomeis the primary goal. The length of
genomedo investigateare ever growing, from small viruses
(a few thousandnucleotides)to large mammals(~ 3 giga
nucleotides),whereasa DNA sequenceup to a length of
only 10% nucleotidescould be read. The prevailing methods
is to fragmentthe whole genomereadthe endsof fragments,
andthenusea computemprogramto assemblehemin proper
orderto infer the whole genomesequenceThis is a NP-hard
problem. Several deterministicalgorithmsbasedon graph-
theory and greedy heuristic algorithms are proposed.But
they are computationallyintensve. The main motivation of
this work is to find an efficient fragmentationassembly
algorithm that could run on cheapcomputers,yet able to
find nearly correctdraft sequences.

Due to exponential growth in computing power, mary
biological problems,which were too comple, now came
within the computationallimits. Due to sophisticatedin-
struments the biological actuvities of the living organisms
are now getting available in bits and piecesof information
andthe field which tries to join thosepiecesof information
togetherand explicate it, is called Bioinformatics [1] [2].
Problemslike homology search,clustering of the of gene
expressiondata, researchon the 3-D structureof proteins,
the genomesequenceare to name a few. Many of the
probleminvolved in Bioinformatics are string matchingor
sequencingproblems,which are NP-completeand require
high end computersand long execution time. The main
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motivation of this work is to proposean efficient algorithm
for assemblingDNA fragments

A. GenomePreliminaries

A genomeis formed by a sequenceof four types of
moleculescalled nucleotidesor basespamelyA (adenine),
T (thymine), C (cytosine)and G (guanine)[3] [4]. Proteins
are responsiblefor different functions of living organisms,
andareformedby a sequenc®f aminoacids.The 20 amino
acids are again coded by triple-basescalled codons,e.g.,
AAA is for Lysine, GAA for Glutamic [4] etc.. Thus the
codonsare words of length 3 formed by the alphabetset
{A, T, C, G}. Only 20 out of 4> = 64 possible codes
are used, and mary codesmap to the sameamino acid,
like AAA and AAG both mapto Lysine, ACA, ACG, ACT,
and ACC all mapto Threonine.The DNA sequences thus
responsibldor producingdifferentproteins,andthereforeis
at the root of functioning of a living organisms.Decoding
genomesequences thusvital to understandhe function as
well as malfunctionof living things. The genomesequence
informationis vital for medical,agriculturalandmary other
researcharea.

B. The Problemof FragmentAssembly

Gel electophotesisis the commonlaboratorymethodfor
readinga DNA sequencelt canreadon anaverageof amere
500to 800basepairsfrom alargersequenceBut our questto
know genomesequences ever-increasingboth in varieties
of organismsandthe length of the genome Most commonly
usedand cost effective processto find genomesequenceas
shotgunsequencing5] [6] [7]. The basic principle is to
first clone the tamget sequenceinto multiple copies, then
break them into fragmentsof nearly equal lengths, read
the sequencesat both ends of the fragments,and finally
reassembléhemin properorderto recover thetargetgenome
[6] [7]. Computersciencecomesin picturein the last stepof
assemblinghe fragmentsThe shotgunsequencin@pproach
was first introducedby Fred Sangerin 1982 [8], and was
thoughtto be ableto sequencéo a maximumof 30 Kbpsto
50 Kbps. In fact, during 80's it (shotgunsequencinycould
successfullysequencaip to 10 Kbps, and by 1990it could
sequencesggmentsup to 40 Kbps.



In 1995, Fleischmannet al. [9] could assemblethe
~1,800 Kbps long H. Influenzaebacterium,and in 2000
Myers et al. [10] was able to assemblex130 Mbps long
Drosophilagenome.By 2001, Landeret al. [11] presented
aninitial sequencing@f humangenomeof ~3.5 Gbpslength.
This was possible not becauseslectiophoresiscannow read
longer base pairs, but due to new innovative algorithms
to assemblefragmentsand improved hardware to crunch
them. During last decademary assemblingalgorithmswere
proposed,the important ones being TIGR assemblei12],
Consed[13], CAP3[14, ARACHNE [15], AMASS [16],
EULER [17], RECOMB [18], Phrap[19], 454[20]. A good
suney of mary of thesealgorithmsis availableat[7]. During
last ten years a few works were reported[21] [22] [23]
to use geneticalgorithm [24] to solve fragmentassembling
problem.Our work is also basedon geneticalgorithm. The
main contribution of this work is to addtwo ideasto improve
theefficiengy of thealgorithm- (1) aChromosomdReduction
Step (CRed)to shortenthe length of the chromosomeand
therebythe search-spaceand (2) ChromosomeRefinement
Step (CRef) to locally improve the fitnessof chromosomes
by somegreedy mutation. Resultsare comparedwith that
obtainedfrom Wblbachia genomeproject.

The paper is organizedin the following sections. In
section2, shotgunsequencingand problemsof the existing
techniguesare briefly explained.Section3 is devotedto the
proposedhlgorithm.In section4, we explain the threeexper
imentswe did andtheir correspondingesults.Conclusionis
in sectionb.

Il. SHOTGUN SEQUENCING METHOD AND ITS PRESENT
STATUS

A. ShotgunSequencing

As alreadymentioned,even today it is possibleto read
only a length of 500 to a maximum of 1000 basepairs by
electophoesis method. To decodea long DNA sequence
we needto fragmentit, read the individual fragmentsand
thenassembleThis is called shotgunsequencingandis the
basisof all sequencingtratgies.Initially it wasthoughtthat
the only way to readlarge genomess to divide the whole
genomeinto large piecescalled BACs (bacterial artificial
chromosomeés which arethenmappedo the genome Shot-
gun sequencss to be usedto sequencesachBAC. It is a
two stephierarchicalprocess.

In contrast, WGSS (whole genome shotgun sequence
endeaorsto do the sequencinglirectly from the fragments,
skippingthe BAC step.It wasthoughtto be computationally
too heavy, anddifficult dueto repeatstretchesn thegenome.
Yet, in 2000Myers et al. successfullysequencedhe fruit fly
drosophilagenomeof length=a:125 Mbps usingWGSS[10].
and WGS was establishedas a generaltechnique.

Though the basesequenceadecipheredby WGSS might
containgaps,andthe accurag is lower thanclone-by-clone
shotgunsequencingby using BACs genomemap, yet, in
mary genomeresearchesrough or partial information of
basesequencesnight be good enough.With that in mind

WGSSwasusedin the determinatiorof drafthumangenome
in 2001 by Celera Genomics[25]. In Japantoo, WGSS
was usedto decodegenomeof Silkwormby Mita in 2004
[26], andthe genomeof Aspegillus oryzaewas decodedoy
Machidain 2005[27]. Our targetis similar. The algorithm
will bring out longer and longer contigs with shorterand
shorter gaps, as it continuesrunning. The user can view
the result, stopit whenthe outputsenesher/hispurpose or
continuesfor gettinglongercontigs.Moreover our algorithm
getsmore and more efficient with generationslueto CRed
and CRef operations.

B. Outline of WGSS

The whole processof WGSS s divided into two - one
is the biological part of cloning, fragmenting,and reading,
and the other one is the computationalpart of assembling
the fragments.

1) Biological Part: The basic shotgun procedurestarts
with a large numberof copiesof DNA whosesequenceave
needto find out. The genomeis then physically cut into a
large numberof randomfragments.Fragmentshat are too
large or too small are then discarded.The length of short
fragmentsaareabout2kbp,andthelong onesareabout10kbp.
The fragmentsaretheninsertedinto the DNA of a bacterial
virus (phage),called vector. Typically one vector contains
onefragment.The fragmentsare calledinsertsandthe setof
inserts,a library. Next, a bacteriumis infectedwith a single
vector, which generateslonesof the vector as well asthe
insert (the fragment)within it. Then, the basepair at both
endsof all the fragmentsare readwith DNA sequencers
shavn in Fig.1.Only about500to 1000bp canbereadusing
presentsequencetechnology This read length dependson
the passingspeedn the capillary of the sequenceBut even
donemeticulouslya readlengthof morethan1000bp is not
possible.The basesequencet both endsof fragmentread
by the sequenceis called read and the pair of readsfrom
two endsis called mate-pais. This procedureis shavn in
Fig. 1.
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Fig. 1. Shotgunsequencing

With large numberof clonesof the vectors,finally the
total basepair readsof fragmentsis several times than the
number of basesof the original genome.Here, we use a
term Coverage which is a measureof redundang of the
fragmentdata, and is definedas the numberof basesread
from fragmentsas a ratio of the length of the sourceDNA
[28].
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It is consideredhat, to be ableto reconstructhe original
genome,the coverage should be set around8 to 10 (de-
scribedas 8X~ 10X). If coverageis high, the probability
of covering original genomeis more and the accuray is
improved. However, the numberof fragmentsand therefore
the computationalcomplexity also increase.In practice,to
sequencdarge genomeshundredsof thousandgo tens of
millions of fragmentsareusedfor assemblyEventhensome
partsof the original genomemay not bereconstructedasthis
is after all a stochastigprocess.

2) ComputationalPart: To sequencéhe Original DNA,
we first identify overlapping sectionsby comparing the
alreadyreadbasesequenceat bothendsof the fragmentsas
shavn in Fig.2. Long rangesof basesequencewithout gaps,
obtainedby assemblingare called contigs Fig.2 showvs two
contigs formed. Here, it is presumedthat two overlapping
read, one a prefix of a fragmentand the other the suffix,
originatefrom the sameregion of the genome.This is how-
ever not always true as there could be repetitve sequences
in the original genome.
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Fig. 2. Formationof contigs

The existing techniquesompareall fragmentsfor overlap
detectionusing distributed processingwith a large number
of high performancecomputersCeleraGenomicsin human
genome project reported that “Computing the set of all
overlapstook roughly 10,000CPU hourswith a suiteof four-
processoAlpha SMPswith 4 gigabytesof RAM. This took
4 to 5 daysin elapsedime with 40 suchmachinesoperating
in parallel” [25]. Obviously, such computationalsupportis
still too expensve.

The positionanddistancebetweencontigsare determined
from the mate pair of fragments(Fig.3). Subsetof contigs
with known order and orientationare groupedtogetherand
this processs called scafolding. This is doneby construct-
ing a graphin which the nodescorrespondo contigs,and
a directededgelinks two nodeswhen mate-pairsbridge the
gap betweenthem. Most of the recentassemblerinclude a
scafolding step.A roughframeof original genomesequence
is made by this scafolding process.After all contigs are
orientedand orderedcorrectly we can close gapsbetween
two contigs. This processs called gap closeror finishing.
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Fig. 3. Scafolding

The finally obtainedbasesequencehat is nearestto the
original genomesequencés calledconsensusequenceAnd
the abose mentionedprocedurebasedon contig formation
andscafolding to form consensusequencés calledoverlap-
layout-consensuparadigm.Many of importantassemblers
areusingthis paradigm.For example,Celeraassembleem-
ploys scafolding algorithmbasedn graphtheoryusingmate
pairs. TIGR assembleemploys greedyalgorithmwheretwo
fragmentswith largestoverlap scoring are memged together
andthis is repeateduntil no more memgescanbe done.

C. Issueswith ShotgunSequencing

Most of the existing assemblersare owned by large-
scale researchfacilities. They are distributed processing
systems consisting of a large number of interconnected
high performancecomputers.To deploy, or even to rent
such a systemis enormouslycostly Though some of the
assemblingsoftwaresare available to the public, in mostof
the casesthosealgorithms’ user interfacesare unclearand
it is hardto transportprogramsto one's own system.Many
of the algorithmsuse exhaustve or computationallyinten-
sive heuristics,involving numberof comparisonsncreasing
exponentially with the numberof fragments.Moreover the
fragmentassemblyprocessgoesthrough several phasesand
numbercrunchingis requiredat eachphase.

On the other hand, the needfor genomesequencings
felt moreand more strongly at every small medicalresearch
centersdrug developmentcentersagriculturalresearctcen-
ters etc.. To help progresstheir researchactvities we need
an efficient fragmentassemblingalgorithm,which could run
on an ordinary PC. Moreover, on mary occasionswvhat one
needsis only a partial sequencingand not the sequencef
the whole genome.

Genetic Algorithm (GA) is alreadya proven robust al-
gorithm for graph searchingand mary other exponential
combinatorialNP-hard problems.There are already a few
researchesf fragmentassemblyusing differentvarietiesof
GA, like hybrid GA which includes heuristic algorithms,
SAGA whereGA is conflatedwith simulatedannealing(SA)
[29], distributed GA [22]. Our proposedGA approachis
standardgeneticalgorithmlik e the one proposedby Parsons
et al. [21]. However, the main contrikbution of this work is
to addtwo ideasto improve the efficiency of the algorithm
- (1) a ChromosomeReductionStep (CRed)to shortenthe
lengthof the chromosomendtherebythe search-spacend
(2) ChromosomedRefinemensStep(CRef) to locally improve



the fitness of chromosomega type of greedy algorithm).
Moreover, the usercan consultwith the intermediateresult
after every few thousandgenerationof GA run. Depending
on the quality of the resultsand her/his requirementsthe
genetic searchmay either be stoppedor be allowed to
continueto run. With further generationghe efficiency of
geneticsearchimprovesdueto CRedand CRef steps.

I1l. PROPOSED TECHNIQUE USING GENETIC ALGORITHM

We proposedmethodfor genomesequencingusing GA.
The basicsof GA [30] is omitted hereasit is well known.
As our proposedechniquds a specializedsetupin fragment
assemblywe emphasizéhe relevant aspectonly.

A. The Styleof GA Chromosome

Though binary or continuousvalue is usedas genesof
GA chromosomean general,we directly usedfragmentsas
genesfor fragmentassembly First, the test genomestring
is clonedand cut at randomlocationsimitating the process
donein WGSS.The fragmentsarelabeledin serialnumbers,
1to N, andthereadinformationarestoredin a Table.Here,
N is thetotal numberof fragments The chromosomef GA,
composedf all thesefragmentsasits gene,is constructed.
Thusthe chromosomés actuallya permutatiorof numbersl
to N. Theinformationof eachgene,i.e., the basesequences
of both endsof fragmentsare known.The fragmentscome
in random sequencesn different chromosomesThe base
sequenceof a fragmentis not cut on the way of genetic
operationslike crosseer, becausecrosseer and mutation
aredoneat the boundaryof fragments.
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Fig. 4. Chromosome®f GA for fragmentsassembly

B. EvaluationFunction
For the evaluation,i.e., fithesscalculation,the similarity

of basepairs of the adjoining gene (actually the genome
fragments)in the individual chromosomesare calculated.

n—2
Fitness (c) = Z similarity (1,7 + 1)
=0

)

The sumtotal of the similarity is the fitnessof anindivid-
ual asin illustratedin Fig.4.In Eq.(2),c is a chromosome;
andi + 1 areadjoining fragmentsandn is the total number
of genein the chromosomeTo calculatethe similarity we
useSmith-Watermaralgorithmthatdetectsa local alignment
by dynamicprogramming.

C. Selection

Initially the fitnessdid not shov a considerableisparity
in chromosomedbecauseof the randompermutationof the
fragmentsThereforewe userankingmethodin GA selection.
We also useelitist preseration.

D. Crosswer and Mutation

If we allow samegene(heregenomefragment)to appear
multiply in the chromosomethen due to high fitnessthe
whole chromosomewill be floodedby samefragments.We
thereforedo not allow multiple copy of the samefragment.
To ensurethat, we usedorderbasedcrosswer (OX) often
usedfor solving TSP[30]. In OX, offspring 1 directly copies
genesfrom parent 1 from the crosseer point to the end
of the parent 1 chromosome From the beginning of the
offspring 1 chromosomethe rest of the genesare copied
from parent 2 preservingthe sequentialrelative order, thus
skippingthe genesalreadycopiedfrom parent 1. Offspring 2
is constructedsimilarly. Here, two point crosseer is also
possible but we did one point cross@er in our experiments.
Reciprocakxchangevasusedfor Mutation. Simply speaking
two genesare selectedat randomand swappedover.

E. ChromosomeReductionStep

Throughgenerationschromosomesring individual frag-
mentswith high similarity to adjacenpositionsby evaluation
function andselection We usethis tendeng to form contigs
efficiently andreomganizearray of genesin the chromosome
in two stagesfiltering stageand combiningstage We called
this ChromosomeReductionStep (CRed):

Filtering stage : First of all, we set a parameterTy
which decidesat what intervals the filtering would be ex-
ecuted,i.e., filtering takes place every time the generations
numberis a multiple of T;. The genes(fragments)which
are containedwithin contigs already formed in the best
chromosomeare marked. Thosefragmentsare deletedfrom
all the chromosomess well as gene-table Corresponding
contigs are storedin “contig pool”. We needto setup T}
value properly becausef we setup Ty low, filtering will
start even when long contigs are not yet formed inside the
bestchromosomeThenfiltering computatiorwill beawaste.
Thus, an alternatie could be initiating the filtering stage
only when reasonablylong new contigs are formed in the
bestchromosomeln our experiment for simplicity, we fixed
Ty. The individual chromosomesire now composedof the
remaininggenes,and the geneticsearchcontinues.Number
of genesin the chromosomedecreasegraduallyevery time
filtering is done, making the geneticsearchmore efficient.



Whendecreasingintil thelengthof the chromosomeeaches
ratio r. setin advance,combiningstageis happened.

Combining stage: When a new contig is addedto the
contigpool, we try to combineit with the existing fragments
(or contigs), if possible,to make longer contigs. Once a
longer contig is formed, further genes(genomefragments)
could be shedoff from the chromosomeshe way it is done
in the filtering stage.As the contigs becomelonger and
chromosomeshorterwe canrun GA moreefficiently. After
every combining stage,the user could check whether the
available resultsare good enough(long enough)for her/his
purpose.lf not, the geneticsearchcontinues.The flow of
the algorithmis shown in Fig.5, where g is the numberof
generation.
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Fig. 5. Algorithm including CRedand CRef

F. Heuristic Method— ChromosomeRefinemenstep

We proposedheuristic method for efficient scafolding
becausecafolds wasnotableto beformedwith CRedalone
well even thoughit explained by the following experiment
result. Therearefour patternsas shawing in Fig.6 and one
compoundpatternwhentwo fragmentshave overlap.

1) overlapatthetail-partof fragmentA andthebeginning

of fragmentB

2) overlapat the tail-part of two fragments

3) overlapat the beginning of two fragment

4) overlapat the beginning of fragmentA andthe end of

fragmentB.

5) overlapat both beginning and end.

If two fragmentshave overlap of type 4, we swap the
positionsof the two fragments.With this, the positions of
fragmentsn chromosomerearrangedo correspondo there
positionsin the original genome.This refinementof greedy
mutationtakes placeevery T, generationsand operateonly
on bestn, chromosomesThesetwo stepsof CRed and
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Fig. 6. Matchingpatternof two fragments

CRef improve both the efficiency and quality of result of
our geneticsearch.

IV. EXPERIMENTS AND RESULT
A. ExperimentalSet-up

Theinitial experimentgo testthe validity of our proposed
algorithmswere done on genomescreatedartificially. The
test caseswere scaleddown, so that we can completetest
runsin quick intenvals. In our experiments,we usedlower
values(around4X) of coverage.This madethe assembling
task much more difficult. But on the otherhand,dueto less
numberof fragmentthe executiontime of thealgorithmswas
faster

1) Preliminary Experiment; This is the first set of toy
experimentswe did to testthe possibility of solving genome
sequencingproblem using genetic algorithm, the way we
approachedFirst, a genomeof 1,000bp a randomsequence
of A, C, G, T was constructed.We then made 10 clone
copieseachof which werefragmentedo 10 piecesof length
100 bp + 4, whered had uniform distribution from -20 bp
to +20 bp. Thus 100 suchfragmentswere created.Due to
shortlengthof the fragmentswe hadgroupsthatcontainten
fragmentawith high similarity. The total basesof readsis 8X
of original DNA, where eachread was set at 40bp. These
approximately100 fragmentswere arrangedat randomto
form achromosomef GA, andthe genegfragments)nside
the chromosomesvere optimally orderedusing Simple GA.
We setthe probability of crosseer and mutationat 0.5 and
0.005.

2) Results:After 30,000generationsfragmentswith high
similarity were assemblediogethey and we succeededo
form contigs covering 98% of the original DNA on an
averagein eachof the 20 trials. Table | shavs the number
length, and otherinformation aboutcontigs.

On mary occasiongwo or more contigswith large com-
mon basesequencesemainin the chromosomeseparated.
It is possibleto solve it by running mary more generations
of GA, it would take long time. It would be much more
efficient to memge them manually We usedthis experience
to addthe CRedstepin our proposedalgorithm.



TABLE |
RESULT OF PRE-EXPERIMENT

Average | Max | Min
Numberof contigs 22 25 18
Length of contigs 79 134 41
Total size 1872 1968 | 1722
Percentgenomecovered 98 100 89
Error 1 2 0

We scaleddown our experimentsize, and thereforeour
readsizewasalsoshort.lt is felt thatwith longerreadlengths
the efficiengy would improve. In summary if someof the
domainknowledgeis usedto tunethe chromosomeshe GA
would be an efficient way for fragmentsequencing.

B. PerformanceComparisorof the ProposedAlgorithmwith
Standad GA

From the experiments discussedin the previous sec-
tion 1.1, we addedstepsfor heuristictuning of chromosome
as stated in section lll. In this section we comparethe
performancesand see the improvementsof the proposed
algorithm. In the previous experiment, though fragments
were groupedtogetherit was difficult to put themin proper
orderjust by cross@er and selection.If the fragmentswith
high similarity are combinedas contigs, and then contigs
are mutually comparedthe efficiengy of fragmentassembly
would improve. In the ChromosomeReductionStepwe do
combinefragmentto form contigs manually Moreover we
do add greedy mutation to locally sequenceragmentsto
improve sequencingefficiency.

1) ExperimentalSet-up: As before,we scaleddown the
actualproblemsothatrun time is reduced The testgenome
datawere of length 10,000bp, consistingof a randomarray
of four basesA, G, C, T. The length of fragmentswere
set from 300 bp to 500 bp. We used 20 cloned genomes.
Therefore,there were about500 fragments.“read” was set
to 40bp. Thetotal basesof readwasonly 4X of the original
test DNA. Thesevalueswere decidedreferringto [26] and
[21]. The crosswer probability andthe mutationprobability
were setto 0.5 and 0.01 respectiely. We ranthe GA up to
100,000generationsMoreover, the parametef’, at which
CRedwasinitiated, was setat 100.

2) ExperimentalResults: To evaluateour algorithm, we
usedthe ratio of the contigs, lengthsthat had beenfinally
obtained and the original test DNA. If the plural contig
shoved the samerange, then only the longer contig was
usedto calculate. The numberof contigs where a wrong
basesequencéhad beenconstructedwas countedas error.
The above values the obtainednumbersof contigs,andtheir
lengthsare shovn in Table.ll. Both SGA and the proposed
GA wereran for equalnumberof generations.

By genetic reassemblingwe were able to form longer
sequencecontigs as shavn in Fig.7. Fragmentswith high
similarity ware graduallyasthe generationadvanced.Espe-
cially, it shavs that the proposedGA performsmuch better
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Fig. 7. SGA vs ProposedGA

than SGA. Finally, we obtainedcontigs that covered about
70% of the original genome.Once a good chromosomes
formed, its information is usedto improve the quality of
the rest of the chromosomedy detectingfragmentswhich
are no more necessaryThis is achieved with filtering stage.
However, our proposedGA still lacks the power and is
scarcelyable to form scafolds. The maximum length of
contig was 262 bp, and this correspondsto only 2.62%
of original DNA. Yet, mary contigs of similar sizeswere
obtained.Though further generationwould producelonger
contigs,we felt that we needto incorporatesomemeansto
facilitate scafolding to quickly amalgamateontigs.

C. Experimentusing The Data of Wblbachia GenomeSe-
guence

We used Wblbachia genome sequencewhich is a real
genomedata.The actualgenomesequencéasmoretandem
repeatsput we useda smallertestgenomedata.We verified
that it is possibleto assemblefragmentsby the proposal
techniquefor real genomesequencealata.We comparedthe
results obtained by our algorithm with the results using
existing assemblerén Wolbachia genomeproject.

1) Wolbadchia GenomeProject: Wblbadhia is a kind of
bacteriaandfirst microscopicabrganismmonitoredfor hori-
zontalgenetransferto multicellularorganism.t hasattracted
attentionof mary researcherbecauset would be helpfulin
revealingthe evolution of virus. Table.lll is the resultsfrom
existing assemblerdn Wblbachia genomeproject. The of
the genomesize was 1.26 Mbp. The result of total size of
Celeraassemblemsing trimmed datais the nearestto the
actualvalue and error was zero. However TIGR assembler
could form the longestaveragecontigs[31].

2) Experimental Set-up: We use only a small part of
Wblbachia genomesequencédo reducecomputationtime. It
was registeredin GenBankof NCBI and decodedby TIGR
assemblerThe partusedby usis “rpoBC”, which is a gene
that codesfor proteinandthe numberof basess 8,514 bp.
The detailsare shovn in Table.IV.

We made 20 copy this genome sequenceand splited
fragmentsof length 300 bp to 500 bp. Thus, the average
fragmentlength are about400 and “read” is setto 40 bp.
Thus the coverageis 4X. The GA is run for 1,000,000



TABLE I
RESULTS OF COMPARISON OF SGA WITH PROPOSED ALGORITHM

SGA ProposedGA

Average| Max Min | Average| Max Min
Numberof contigs 97 129 67 172 210 165
Lengthof contigs 76 122 51 130 262 54
Total size 31659 | 35282 28623 | 19679 | 26121 | 17682
Percentgenomecovered 58 62 46 65 71 62
Error 4 8 0 6 9 4

TABLE Il

COMPARISON OF SHOTGUN SEQUENCE DATA FROM THE Wblbachia GENOME PROJECT [31]

Assembler TIGR Assembler| CeleraAssembler| Celeratrimmeddata
Numberof contigs 76 220 101
Averagecontig length 16.8kbp 6.3kbp 12.5kbp
Total size 1.28Mbp 1.39Mbp 1.26Mbp
Percentgenomecovered 93.1 99.1 98.4
Error 2 1 0

TABLE IV

FURTHER DETAILS ABOUT Wblbadchia GENOME DATA

Wblbadia endosymbionbf Drosophilamelanogaster
whole genome rpoBC
NCBI RefSeq.: NC_ 002978 genelD : 2738525
GenBank: AE017196 Locustag: WD0024
Length: 1,267,782bp Length: 8,514bp

generationsThe crosswer rateandthe mutationrate,are set
to 0.5and0.01respectiely. T is setto 100in filtering stage.
CRef takes place at 100 generationgTs = 100), just after
filtering stageis executedandoperategop 10 chromosomes
(ns = 10).

3) Results: The results of experimentusing Wolbachia
rpoBC genomedataare shavn in Table.V.

TABLE V
RESULTS OF EXPERIMENT USING Wolbachia GENOME DATA

Average | Max Min
Numberof contigs 163 181 156
Length of contigs 158 301 52
Total size 18512 | 24557 | 15987
Percentgenomecovered 67 82 58
Error 8 13 5

Becausave extendedthe numberof generationthe contig
length and the proportionof genomecoveredwasimproved
thanthe previous experimentswith 30,000generationHow-
ever, the error is increasedbecausethe real-life genome
has mary tandemrepeats.This problem could be solved
by incorporating domain knowledge in the algorithm. In
addition, fragmentsthat remainsin the chromosomeafter
filtering stage,could be usedfor scafolding andsequencing
contigs.Thisis notyetincorporatedn our algorithm.Yet, the

resultsin Fig.8 shaws that fithessof chromosomeancreases
evenafter1,000,000generationsWe canthereforeexpectto
achieve betterresultsif the algorithmis run further.
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Fig. 8. Transitionof fitness

Table.VIshavsthe comparisorof theratio of averagecon-
tig length. We comparedratios of the averagecontig length
to the lengthof the original genomeOur proposedechnique
could form long contigson an average(though the results
are basedon experimentsof different complexities). Even
thoughour algorithm hasobvious scopeof improvementsijt
is ableto deliver goodresultsandis expectedto be anuseful
tool.

As already mentioned,due to lack of adequatecompu-
tational support,we scaleddown the problem,and reduced
the “read” length as well as coverage.This hamperedthe
progressof searchas well as the quality of the result.
conditionsof the actualgenomeanalysisby the limit of our
experimentalervironment.



TABLE VI
COMPARISON OF THE RATIO OF AVERAGE CONTIG LENGTH

averagecontig length (%)
Proposedechnique 1.86
TIGR assembler 1.33
Celeraassembler 0.5
Celeratrimmeddata 0.99

V. CONCLUSION

We proposeda geneticalgorithm basedapproachto as-
sembleDNA fragmentsto find the genomesequenceTo
improve the efficiengy of GA for fragmentassembly we
addedtwo ideas,ChromosomeReductionstep (CRed) and
ChromosomeRefinementstep (CRef). As a result, both the
speecandquality of resultof assemblingmproved.We could
obtain80% of the WolbachiagenomesequenceThe ratio of
averagecontig-lengthsomparedo the whole genomdength
were higher

There are scopesof improvementof our algorithm by
incorporating:

« scafolding eitherin GA itself, or executeit a separately

at regular intenvals along with combiningstage.

« stratgy to avoid errorsdueto tandemrepeats.

For the aborve two, we can use knowledge and stratgjies
alreadyexisting in other assemblingalgorithmslike Celera
[25].

In addition, the CRef heuristic stratgyy proposedhere
is most simple. Many modifications are possible leading
to better efficiengy. Another positive aspectof the genetic
approachs that,onecanalwaysview theintermediateesult
and decidewhetherto continuefurther for betterresultsor
not.
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