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Abstract— We proposeda genetic algorithm (GA) approach
to solve the genomesequencingproblem.The main contribution
of this work is to add two ideasto impr ove the efficiency of the
algorithm - (1) a ChromosomeReduction Step (CRed) method
to shorten the length of the chromosomeand therebythe search-
space,and (2) ChromosomeRefinementStep(CRef) is a greedy
heuristics to locally impr ove the fitness of chromosomes.The
algorithm will bring out longer and longer contigswith shorter
and shorter gaps, as it continues running. At any stage the
user can view the result, stop it when the output servesher/his
purpose, or continue for getting longer contigs. We ran the
proposedalgorithm on part of the Wolbachia project work, and
compared the results.

I . INTRODUCTION

At present,many researchgroupsarededicatedto analyze
genomesof various living objects, and DNA sequencing
of the whole genomeis the primary goal. The length of
genomesto investigateareever growing, from small viruses
(a few thousandnucleotides)to large mammals( � 3 giga
nucleotides),whereasa DNA sequenceup to a length of
only ����� nucleotidescould be read.The prevailing methods
is to fragmentthewholegenome,readtheendsof fragments,
andthenusea computerprogramto assemblethemin proper
orderto infer thewholegenomesequence.This is a NP-hard
problem.Several deterministicalgorithmsbasedon graph-
theory, and greedy heuristic algorithms are proposed.But
they are computationallyintensive. The main motivation of
this work is to find an efficient fragmentationassembly
algorithm that could run on cheapcomputers,yet able to
find nearlycorrectdraft sequences.

Due to exponential growth in computing power, many
biological problems,which were too complex, now came
within the computationallimits. Due to sophisticatedin-
struments,the biological activities of the living organisms
are now getting available in bits and piecesof information
and the field which tries to join thosepiecesof information
togetherand explicate it, is called Bioinformatics [1] [2].
Problemslike homology search,clusteringof the of gene
expressiondata, researchon the 3-D structureof proteins,
the genomesequence,are to name a few. Many of the
problem involved in Bioinformatics are string matchingor
sequencingproblems,which are NP-completeand require
high end computersand long execution time. The main

motivation of this work is to proposean efficient algorithm
for assemblingDNA fragments.

A. GenomePreliminaries

A genomeis formed by a sequenceof four types of
molecules,callednucleotidesor bases,namelyA (adenine),
T (thymine),C (cytosine)andG (guanine)[3] [4]. Proteins
are responsiblefor different functions of living organisms,
andareformedby a sequenceof aminoacids.The20 amino
acids are again coded by triple-basescalled codons,e.g.,
AAA is for Lysine, GAA for Glutamic [4] etc.. Thus the
codonsare words of length 3 formed by the alphabetset�
A, T, C, G 	 . Only 20 out of 
 ���� 
 possiblecodes

are used, and many codesmap to the sameamino acid,
like AAA andAAG both mapto Lysine,ACA, ACG, ACT,
andACC all map to Threonine.The DNA sequenceis thus
responsiblefor producingdifferentproteins,andthereforeis
at the root of functioning of a living organisms.Decoding
genomesequenceis thusvital to understandthe function as
well as malfunctionof living things.The genomesequence
informationis vital for medical,agriculturalandmany other
researcharea.

B. TheProblemof FragmentAssembly

Gel electrophoresisis the commonlaboratorymethodfor
readinga DNA sequence.It canreadon anaverageof a mere
500to 800basepairsfrom a largersequence.But ourquestto
know genomesequenceis ever-increasing,both in varieties
of organismsandthe lengthof the genome.Most commonly
usedand cost effective processto find genomesequenceis
shotgunsequencing[5] [6] [7]. The basic principle is to
first clone the target sequenceinto multiple copies, then
break them into fragmentsof nearly equal lengths, read
the sequencesat both ends of the fragments,and finally
reassemblethemin properorderto recover thetargetgenome
[6] [7]. Computersciencecomesin picturein the laststepof
assemblingthe fragments.Theshotgunsequencingapproach
was first introducedby Fred Sangerin 1982 [8], and was
thoughtto be ableto sequenceto a maximumof 30 Kbps to
50 Kbps. In fact, during 80’s it (shotgunsequencing) could
successfullysequenceup to 10 Kbps, and by 1990 it could
sequencesegmentsup to 40 Kbps.



In 1995, Fleischmannet al. [9] could assemblethe� 1,800 Kbps long H. Influenzaebacterium,and in 2000
Myers et al. [10] was able to assemble� 130 Mbps long
Drosophilagenome.By 2001, Landeret al. [11] presented
aninitial sequencingof humangenomeof � 3.5Gbpslength.
This waspossible,not becauseelectrophoresiscannow read
longer base pairs, but due to new innovative algorithms
to assemblefragmentsand improved hardware to crunch
them.During last decademany assemblingalgorithmswere
proposed,the important onesbeing TIGR assembler[12],
Consed[13], CAP3[14], ARACHNE [15], AMASS [16],
EULER [17], RECOMB [18], Phrap[19], 454 [20]. A good
survey of many of thesealgorithmsis availableat [7]. During
last ten years a few works were reported [21] [22] [23]
to usegeneticalgorithm [24] to solve fragmentassembling
problem.Our work is also basedon geneticalgorithm.The
maincontributionof this work is to addtwo ideasto improve
theefficiency of thealgorithm- (1) aChromosomeReduction
Step (CRed) to shortenthe length of the chromosomeand
therebythe search-space,and (2) ChromosomeRefinement
Step(CRef) to locally improve the fitnessof chromosomes
by somegreedymutation. Resultsare comparedwith that
obtainedfrom Wolbachia genomeproject.

The paper is organized in the following sections. In
section2, shotgunsequencingand problemsof the existing
techniquesarebriefly explained.Section3 is devotedto the
proposedalgorithm.In section4, we explain thethreeexper-
imentswe did andtheir correspondingresults.Conclusionis
in section5.

I I . SHOTGUN SEQUENCING METHOD AND ITS PRESENT

STATUS

A. ShotgunSequencing

As alreadymentioned,even today it is possibleto read
only a length of 500 to a maximumof 1000 basepairs by
electrophoresis method.To decodea long DNA sequence
we needto fragment it, read the individual fragmentsand
thenassemble.This is calledshotgunsequencing, andis the
basisof all sequencingstrategies.Initially it wasthoughtthat
the only way to readlarge genomesis to divide the whole
genomeinto large piecescalled BACs (bacterial artificial
chromosomes), which arethenmappedto the genome.Shot-
gun sequenceis to be usedto sequenceeachBAC. It is a
two stephierarchicalprocess.

In contrast, WGSS (whole genome shotgun sequence)
endeavors to do the sequencingdirectly from the fragments,
skippingtheBAC step.It wasthoughtto becomputationally
too heavy, anddifficult dueto repeatstretchesin thegenome.
Yet, in 2000Myerset al. successfullysequencedthe fruit fly
drosophilagenomeof length � 125MbpsusingWGSS[10].
andWGS wasestablishedasa generaltechnique.

Though the basesequencedecipheredby WGSS might
containgaps,andthe accuracy is lower thanclone-by-clone
shotgunsequencingby using BACs genomemap, yet, in
many genomeresearches,rough or partial information of
basesequencesmight be good enough.With that in mind

WGSSwasusedin thedeterminationof drafthumangenome
in 2001 by Celera Genomics[25]. In Japantoo, WGSS
was usedto decodegenomeof Silkworm by Mita in 2004
[26], andthe genomeof Aspergillus oryzaewasdecodedby
Machida in 2005 [27]. Our target is similar. The algorithm
will bring out longer and longer contigs with shorterand
shorter gaps, as it continuesrunning. The user can view
the result,stop it whenthe outputservesher/hispurpose,or
continuesfor gettinglongercontigs.Moreover our algorithm
getsmore and more efficient with generationsdue to CRed
andCRef operations.

B. Outline of WGSS

The whole processof WGSS is divided into two - one
is the biological part of cloning, fragmenting,and reading,
and the other one is the computationalpart of assembling
the fragments.

1) Biological Part: The basic shotgunprocedurestarts
with a large numberof copiesof DNA whosesequencewe
needto find out. The genomeis then physically cut into a
large numberof randomfragments.Fragmentsthat are too
large or too small are then discarded.The length of short
fragmentsareabout2kbp,andthelongonesareabout10kbp.
The fragmentsaretheninsertedinto the DNA of a bacterial
virus (phage),called vector. Typically one vector contains
onefragment.Thefragmentsarecalledinsertsandthesetof
inserts,a library. Next, a bacteriumis infectedwith a single
vector, which generatesclonesof the vector as well as the
insert (the fragment)within it. Then, the basepair at both
endsof all the fragmentsare readwith DNA sequenceras
shown in Fig.1.Only about500to 1000bp canbereadusing
presentsequencertechnology. This read length dependson
the passingspeedin the capillaryof the sequencer. But even
donemeticulouslya readlengthof morethan1000bp is not
possible.The basesequenceat both endsof fragmentread
by the sequenceris called read, and the pair of readsfrom
two endsis called mate-pairs. This procedureis shown in
Fig. 1.
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Fig. 1. Shotgunsequencing

With large numberof clonesof the vectors,finally the
total basepair readsof fragmentsis several times than the
number of basesof the original genome.Here, we use a
term Coverage which is a measureof redundancy of the
fragmentdata,and is definedas the numberof basesread
from fragmentsas a ratio of the length of the sourceDNA
[28].
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It is consideredthat, to be ableto reconstructthe original
genome,the coverage should be set around 8 to 10 (de-
scribedas 8X � 10X). If coverageis high, the probability
of covering original genomeis more and the accuracy is
improved. However, the numberof fragmentsand therefore
the computationalcomplexity also increase.In practice,to
sequencelarge genomes,hundredsof thousandsto tens of
millions of fragmentsareusedfor assembly. Eventhensome
partsof theoriginalgenomemaynot bereconstructed,asthis
is after all a stochasticprocess.

2) ComputationalPart: To sequencethe Original DNA,
we first identify overlapping sections by comparing the
alreadyreadbasesequencesat bothendsof thefragments,as
shown in Fig.2.Long rangesof basesequenceswithout gaps,
obtainedby assembling,arecalledcontigs. Fig.2 shows two
contigs formed. Here, it is presumedthat two overlapping
read, one a prefix of a fragmentand the other the suffix,
originatefrom the sameregion of the genome.This is how-
ever not always true as therecould be repetitive sequences
in the original genome.
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Fig. 2. Formationof contigs

Theexisting techniquescompareall fragmentsfor overlap
detectionusing distributed processingwith a large number
of high performancecomputers.CeleraGenomicsin human
genome project reported that “Computing the set of all
overlapstook roughly10,000CPUhourswith a suiteof four-
processorAlpha SMPswith 4 gigabytesof RAM. This took
4 to 5 daysin elapsedtime with 40 suchmachinesoperating
in parallel” [25]. Obviously, suchcomputationalsupportis
still too expensive.

The positionanddistancebetweencontigsaredetermined
from the matepair of fragments(Fig.3). Subsetof contigs
with known order and orientationare groupedtogetherand
this processis calledscaffolding. This is doneby construct-
ing a graph in which the nodescorrespondto contigs,and
a directededgelinks two nodeswhenmate-pairsbridge the
gapbetweenthem.Most of the recentassemblersincludea
scaffolding step.A roughframeof original genomesequence
is made by this scaffolding process.After all contigs are
orientedand orderedcorrectly, we can closegapsbetween
two contigs.This processis calledgapcloseror finishing.
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Fig. 3. Scaffolding

The finally obtainedbasesequencethat is nearestto the
original genomesequenceis calledconsensussequence.And
the above mentionedprocedurebasedon contig formation
andscaffolding to form consensussequenceis calledoverlap-
layout-consensusparadigm.Many of important assemblers
areusingthis paradigm.For example,Celeraassemblerem-
ploysscaffolding algorithmbasedongraphtheoryusingmate
pairs.TIGR assembleremploys greedyalgorithmwheretwo
fragmentswith largestoverlap scoringare merged together
and this is repeateduntil no moremergescanbe done.

C. Issueswith ShotgunSequencing

Most of the existing assemblersare owned by large-
scale researchfacilities. They are distributed processing
systemsconsisting of a large number of interconnected
high performancecomputers.To deploy, or even to rent
such a systemis enormouslycostly. Though some of the
assemblingsoftwaresareavailable to the public, in mostof
the casesthosealgorithms’ user interfacesare unclearand
it is hard to transportprogramsto one’s own system.Many
of the algorithmsuse exhaustive or computationallyinten-
sive heuristics,involving numberof comparisonsincreasing
exponentiallywith the numberof fragments.Moreover the
fragmentassemblyprocessgoesthroughseveral phasesand
number-crunchingis requiredat eachphase.

On the other hand, the need for genomesequencingis
felt moreandmorestronglyat every small medicalresearch
centers,drug developmentcenters,agriculturalresearchcen-
ters etc.. To help progresstheir researchactivities we need
an efficient fragmentassemblingalgorithm,which could run
on an ordinaryPC. Moreover, on many occasionswhat one
needsis only a partial sequencing,andnot the sequenceof
the whole genome.

Genetic Algorithm (GA) is already a proven robust al-
gorithm for graph searchingand many other exponential
combinatorialNP-hardproblems.There are alreadya few
researchesof fragmentassemblyusingdifferentvarietiesof
GA, like hybrid GA which includes heuristic algorithms,
SAGA whereGA is conflatedwith simulatedannealing(SA)
[29], distributed GA [22]. Our proposedGA approachis
standardgeneticalgorithmlike the oneproposedby Parsons
et al. [21]. However, the main contribution of this work is
to add two ideasto improve the efficiency of the algorithm
- (1) a ChromosomeReductionStep(CRed)to shortenthe
lengthof the chromosomeandtherebythe search-space,and
(2) ChromosomeRefinementStep(CRef) to locally improve



the fitness of chromosomes(a type of greedy algorithm).
Moreover, the usercan consultwith the intermediateresult
after every few thousandgenerationsof GA run. Depending
on the quality of the resultsand her/his requirements,the
genetic search may either be stopped or be allowed to
continueto run. With further generationsthe efficiency of
geneticsearchimprovesdue to CRedandCRef steps.

I I I . PROPOSED TECHNIQUE USING GENETIC ALGORITHM

We proposedmethodfor genomesequencingusing GA.
The basicsof GA [30] is omitted hereas it is well known.
As our proposedtechniqueis a specializedsetupin fragment
assembly, we emphasizethe relevant aspectsonly.

A. TheStyleof GA Chromosome

Though binary or continuousvalue is usedas genesof
GA chromosomein general,we directly usedfragmentsas
genesfor fragmentassembly. First, the test genomestring
is clonedand cut at randomlocationsimitating the process
donein WGSS.Thefragmentsarelabeledin serialnumbers,
1 to � , andthe readinformationarestoredin a Table.Here,� is thetotal numberof fragments.Thechromosomeof GA,
composedof all thesefragmentsas its gene,is constructed.
Thusthechromosomeis actuallya permutationof numbers1
to � . The informationof eachgene,i.e., the basesequences
of both endsof fragmentsare known.The fragmentscome
in random sequencesin different chromosomes.The base
sequenceof a fragment is not cut on the way of genetic
operationslike crossover, becausecrossover and mutation
aredoneat the boundaryof fragments.
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Fig. 4. Chromosomesof GA for fragmentsassembly

B. EvaluationFunction

For the evaluation, i.e., fitnesscalculation,the similarity
of basepairs of the adjoining gene (actually the genome
fragments)in the individual chromosomes,arecalculated.
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The sumtotal of the similarity is the fitnessof an individ-
ual asin illustratedin Fig.4. In Eq.(2),

Á
is a chromosome,

¸
and

¸%Ð � areadjoiningfragmentsand
»

is the total number
of genein the chromosome.To calculatethe similarity we
useSmith-Watermanalgorithmthatdetectsa local alignment
by dynamicprogramming.

C. Selection

Initially the fitnessdid not show a considerabledisparity
in chromosomesbecauseof the randompermutationof the
fragments.Thereforeweuserankingmethodin GA selection.
We alsouseelitist preservation.

D. Crossover and Mutation

If we allow samegene(heregenomefragment)to appear
multiply in the chromosome,then due to high fitness the
whole chromosomewill be floodedby samefragments.We
thereforedo not allow multiple copy of the samefragment.
To ensurethat, we usedorder-basedcrossover (OX) often
usedfor solvingTSP[30]. In OX, offspring1 directly copies
genesfrom parent 1 from the crossover point to the end
of the parent 1 chromosome.From the beginning of the
offspring 1 chromosome,the rest of the genesare copied
from parent 2 preservingthe sequentialrelative order, thus
skippingthegenesalreadycopiedfrom parent1. Offspring2
is constructedsimilarly. Here, two point crossover is also
possible,but we did onepoint crossover in our experiments.
Reciprocalexchangewasusedfor Mutation.Simplyspeaking
two genesareselectedat randomandswappedover.

E. ChromosomeReductionStep

Throughgenerations,chromosomesbring individual frag-
mentswith high similarity to adjacentpositionsby evaluation
functionandselection.We usethis tendency to form contigs
efficiently andreorganizearrayof genesin the chromosome
in two stages,filtering stageandcombiningstage.We called
this ChromosomeReductionStep(CRed):

Filtering stage : First of all, we set a parameter ÒÇÓ
which decidesat what intervals the filtering would be ex-
ecuted,i.e., filtering takes placeevery time the generations
numberis a multiple of Ò½Ó . The genes(fragments)which
are containedwithin contigs already formed in the best
chromosomearemarked. Thosefragmentsaredeletedfrom
all the chromosomesas well as gene-table.Corresponding
contigs are storedin “contig pool”. We needto set up Ò Ó
value properly becauseif we set up Ò Ó low, filtering will
start even when long contigsare not yet formed inside the
bestchromosome.Thenfiltering computationwill beawaste.
Thus, an alternative could be initiating the filtering stage
only when reasonablylong new contigs are formed in the
bestchromosome.In our experiment,for simplicity, we fixedÒ½Ó . The individual chromosomesare now composedof the
remaininggenes,and the geneticsearchcontinues.Number
of genesin the chromosomedecreasesgraduallyevery time
filtering is done,making the geneticsearchmore efficient.



Whendecreasinguntil thelengthof thechromosomereaches
ratio

Ì0Ô
set in advance,combiningstageis happened.

Combining stage : When a new contig is addedto the
contigpool, we try to combineit with theexisting fragments
(or contigs), if possible, to make longer contigs. Once a
longer contig is formed, further genes(genomefragments)
could be shedoff from the chromosomesthe way it is done
in the filtering stage.As the contigs becomelonger and
chromosomesshorterwe canrun GA moreefficiently. After
every combining stage,the user could check whether the
available resultsare good enough(long enough)for her/his
purpose.If not, the geneticsearchcontinues.The flow of
the algorithm is shown in Fig.5, where Õ is the numberof
generation.
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Fig. 5. Algorithm including CRedandCRef

F. Heuristic Method— ChromosomeRefinementStep

We proposedheuristic method for efficient scaffolding
becausescaffoldswasnot ableto beformedwith CRedalone
well even though it explainedby the following experiment
result . Thereare four patternsasshowing in Fig.6 andone
compoundpatternwhen two fragmentshave overlap.

1) overlapat thetail-partof fragmentA andthebeginning
of fragmentB

2) overlapat the tail-part of two fragments
3) overlapat the beginning of two fragment
4) overlapat the beginningof fragmentA andthe endof

fragmentB.
5) overlapat both beginning andend.

If two fragmentshave overlap of type 4, we swap the
positionsof the two fragments.With this, the positionsof
fragmentsin chromosomearearrangedto correspondto there
positionsin the original genome.This refinementof greedy
mutationtakesplaceevery Ò"! generations,andoperateonly
on best

» ! chromosomes.These two stepsof CRed and
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Fig. 6. Matchingpatternof two fragments

CRef improve both the efficiency and quality of result of
our geneticsearch.

IV. EXPERIMENTS AND RESULT

A. ExperimentalSet-up

The initial experimentsto testthevalidity of our proposed
algorithmswere done on genomescreatedartificially. The
test caseswere scaleddown, so that we can completetest
runs in quick intervals. In our experiments,we usedlower
values(around4X) of coverage.This madethe assembling
taskmuchmoredifficult. But on the otherhand,dueto less
numberof fragmenttheexecutiontime of thealgorithmswas
faster.

1) Preliminary Experiment: This is the first set of toy
experimentswe did to testthe possibilityof solving genome
sequencingproblem using genetic algorithm, the way we
approached.First, a genomeof 1,000bp a randomsequence
of A, C, G, T was constructed.We then made 10 clone
copieseachof which werefragmentedto 10 piecesof length
100 bp + 8 , where 8 had uniform distribution from -20 bp
to +20 bp. Thus 100 such fragmentswere created.Due to
shortlengthof thefragments,we hadgroupsthatcontainten
fragmentswith high similarity. Thetotal basesof readsis 8X
of original DNA, where eachread was set at 40bp. These
approximately100 fragmentswere arrangedat randomto
form a chromosomeof GA, andthegenes(fragments)inside
the chromosomeswereoptimally orderedusingSimpleGA.
We set the probability of crossover andmutationat 0.5 and
0.005.

2) Results:After 30,000generations,fragmentswith high
similarity were assembledtogether, and we succeededto
form contigs covering 98% of the original DNA on an
averagein eachof the 20 trials. Table I shows the number,
length,andother informationaboutcontigs.

On many occasionstwo or morecontigswith large com-
mon basesequencesremainin the chromosomesseparated.
It is possibleto solve it by runningmany more generations
of GA, it would take long time. It would be much more
efficient to merge them manually. We usedthis experience
to add the CRedstepin our proposedalgorithm.



TABLE I

RESULT OF PRE-EXPERIMENT

Average Max Min
Numberof contigs 22 25 18
Lengthof contigs 79 134 41
Total size 1872 1968 1722
Percentgenomecovered 98 100 89
Error 1 2 0

We scaleddown our experimentsize, and thereforeour
readsizewasalsoshort.It is felt thatwith longerreadlengths
the efficiency would improve. In summary, if someof the
domainknowledgeis usedto tunethechromosomes,theGA
would be an efficient way for fragmentsequencing.

B. PerformanceComparisonof theProposedAlgorithmwith
Standard GA

From the experiments discussedin the previous sec-
tion 1.1, we addedstepsfor heuristictuning of chromosome
as stated in section III. In this section we compare the
performancesand see the improvementsof the proposed
algorithm. In the previous experiment, though fragments
weregroupedtogetherit wasdifficult to put themin proper
order just by crossover andselection.If the fragmentswith
high similarity are combinedas contigs, and then contigs
aremutually compared,the efficiency of fragmentassembly
would improve. In the ChromosomeReductionStepwe do
combinefragmentto form contigs manually. Moreover we
do add greedy mutation to locally sequencefragmentsto
improve sequencingefficiency.

1) ExperimentalSet-up: As before,we scaleddown the
actualproblemso that run time is reduced.The testgenome
datawereof length10,000bp, consistingof a randomarray
of four basesA, G, C, T. The length of fragmentswere
set from 300 bp to 500 bp. We used20 cloned genomes.
Therefore,therewere about500 fragments.“read” was set
to 40bp.The total basesof readwasonly 4X of the original
test DNA. Thesevalueswere decidedreferring to [26] and
[21]. The crossover probability andthe mutationprobability
wereset to 0.5 and0.01 respectively. We ran the GA up to
100,000generations.Moreover, the parameterÒ½Ó , at which
CRedwas initiated, wassetat 100.

2) ExperimentalResults: To evaluateour algorithm, we
usedthe ratio of the contigs, lengthsthat had beenfinally
obtained and the original test DNA. If the plural contig
showed the samerange, then only the longer contig was
used to calculate.The number of contigs where a wrong
basesequencehad beenconstructedwas countedas error.
Theabove values,theobtainednumbersof contigs,andtheir
lengthsare shown in Table.II. Both SGA and the proposed
GA wereran for equalnumberof generations.

By genetic reassembling,we were able to form longer
sequencecontigs as shown in Fig.7. Fragmentswith high
similarity waregraduallyas the generationadvanced.Espe-
cially, it shows that the proposedGA performsmuchbetter
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Fig. 7. SGA vs ProposedGA

than SGA. Finally, we obtainedcontigs that coveredabout
70% of the original genome.Once a good chromosomeis
formed, its information is used to improve the quality of
the rest of the chromosomesby detectingfragmentswhich
areno morenecessary. This is achieved with filtering stage.
However, our proposedGA still lacks the power and is
scarcelyable to form scaffolds. The maximum length of
contig was 262 bp, and this correspondsto only 2.62%
of original DNA. Yet, many contigs of similar sizeswere
obtained.Though further generationwould producelonger
contigs,we felt that we needto incorporatesomemeansto
facilitatescaffolding to quickly amalgamatecontigs.

C. Experimentusing The Data of Wolbachia GenomeSe-
quence

We used Wolbachia genomesequencewhich is a real
genomedata.The actualgenomesequencehasmoretandem
repeats,but we useda smallertestgenomedata.We verified
that it is possibleto assemblefragmentsby the proposal
techniquefor real genomesequencedata.We comparedthe
results obtained by our algorithm with the results using
existing assemblersin Wolbachia genomeproject.

1) Wolbachia GenomeProject: Wolbachia is a kind of
bacteriaandfirst microscopicalorganismmonitoredfor hori-
zontalgenetransferto multicellularorganism.It hasattracted
attentionof many researchersbecauseit would be helpful in
revealingthe evolution of virus. Table.III is the resultsfrom
existing assemblersin Wolbachia genomeproject. The of
the genomesize was 1.26 Mbp. The result of total size of
Celeraassemblerusing trimmed data is the nearestto the
actualvalue and error was zero. However TIGR assembler
could form the longestaveragecontigs[31].

2) ExperimentalSet-up: We use only a small part of
Wolbachia genomesequenceto reducecomputationtime. It
was registeredin GenBankof NCBI anddecodedby TIGR
assembler. The part usedby us is “rpoBC”, which is a gene
that codesfor proteinand the numberof basesis 8,514bp.
The detailsareshown in Table.IV.

We made 20 copy this genome sequenceand splited
fragmentsof length 300 bp to 500 bp. Thus, the average
fragmentlength are about 400 and “read” is set to 40 bp.
Thus the coverage is 4X. The GA is run for 1,000,000



TABLE II

RESULTS OF COMPARISON OF SGA WITH PROPOSED ALGORITHM

SGA ProposedGA
Average Max Min Average Max Min

Numberof contigs 97 129 67 172 210 165
Lengthof contigs 76 122 51 130 262 54
Total size 31659 35282 28623 19679 26121 17682
Percentgenomecovered 58 62 46 65 71 62
Error 4 8 0 6 9 4

TABLE III

COMPARISON OF SHOTGUN SEQUENCE DATA FROM THE Wolbachia GENOME PROJECT [31]

Assembler TIGR Assembler CeleraAssembler Celeratrimmeddata
Numberof contigs 76 220 101
Averagecontig length 16.8kbp 6.3kbp 12.5kbp
Total size 1.28Mbp 1.39Mbp 1.26Mbp
Percentgenomecovered 93.1 99.1 98.4
Error 2 1 0

TABLE IV

FURTHER DETAILS ABOUT Wolbachia GENOME DATA

Wolbachia endosymbiontof Drosophilamelanogaster
whole genome rpoBC

NCBI RefSeq.: NC 002978 geneID : 2738525
GenBank: AE017196 Locustag : WD0024
Length : 1,267,782bp Length : 8,514bp

generations.Thecrossover rateandthemutationrate,areset
to 0.5and0.01respectively. Ò½Ó is setto 100in filtering stage.
CRef takes placeat 100 generations( Òt! � �"�C� ), just after
filtering stageis executedandoperatestop 10 chromosomes
(
» ! � �"� ).

3) Results: The results of experiment using Wolbachia
rpoBC genomedataareshown in Table.V.

TABLE V

RESULTS OF EXPERIMENT USING Wolbachia GENOME DATA

Average Max Min
Numberof contigs 163 181 156
Lengthof contigs 158 301 52
Total size 18512 24557 15987
Percentgenomecovered 67 82 58
Error 8 13 5

Becausewe extendedthenumberof generation,thecontig
lengthandthe proportionof genomecoveredwasimproved
thanthepreviousexperimentswith 30,000generation.How-
ever, the error is increasedbecausethe real-life genome
has many tandemrepeats.This problem could be solved
by incorporating domain knowledge in the algorithm. In
addition, fragmentsthat remainsin the chromosomeafter
filtering stage,could be usedfor scaffolding andsequencing
contigs.This is notyet incorporatedin ouralgorithm.Yet, the

resultsin Fig.8 shows that fitnessof chromosomeincreases
evenafter1,000,000generations.We canthereforeexpectto
achieve betterresultsif the algorithmis run further.
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Fig. 8. Transitionof fitness

Table.VIshowsthecomparisonof theratioof averagecon-
tig length.We comparedratiosof the averagecontig length
to thelengthof theoriginal genome.Our proposedtechnique
could form long contigs on an average(though the results
are basedon experimentsof different complexities). Even
thoughour algorithmhasobviousscopeof improvements,it
is ableto deliver goodresultsandis expectedto beanuseful
tool.

As already mentioned,due to lack of adequatecompu-
tational support,we scaleddown the problem,and reduced
the “read” length as well as coverage.This hamperedthe
progressof search as well as the quality of the result.
conditionsof the actualgenomeanalysisby the limit of our
experimentalenvironment.



TABLE VI

COMPARISON OF THE RATIO OF AVERAGE CONTIG LENGTH

averagecontig length(%)
Proposedtechnique 1.86

TIGR assembler 1.33
Celeraassembler 0.5

Celeratrimmeddata 0.99

V. CONCLUSION

We proposeda geneticalgorithm basedapproachto as-
sembleDNA fragmentsto find the genomesequence.To
improve the efficiency of GA for fragment assembly, we
addedtwo ideas,ChromosomeReductionstep (CRed)and
ChromosomeRefinementstep(CRef). As a result,both the
speedandqualityof resultof assemblingimproved.Wecould
obtain80%of theWolbachiagenomesequence.The ratio of
averagecontig-lengthscomparedto thewholegenomelength
werehigher.

There are scopesof improvement of our algorithm by
incorporating:

� scaffolding eitherin GA itself, or executeit a separately
at regular intervals alongwith combiningstage.� strategy to avoid errorsdue to tandemrepeats.

For the above two, we can use knowledge and strategies
alreadyexisting in other assemblingalgorithmslike Celera
[25].

In addition, the CRef heuristic strategy proposedhere
is most simple. Many modifications are possible leading
to better efficiency. Another positive aspectof the genetic
approachis that,onecanalwaysview the intermediateresult
and decidewhetherto continuefurther for better resultsor
not.

REFERENCES

[1] T. Gojobori, Bioinformatics, Springer-Verlag Tokyo, 2003, ISBN
4431709223

[2] J.C. Neil andP. A. Pavel, AnIntroductionto BioinformaticsAlgorithms,
A Bradfordbook, 2004,ISBN 0262101068

[3] P. A. Benjamin,Genetics- A ConceptualApproach, W.H.Freemanand
Company, 2005,ISBN 0716788810

[4] P. P. Vaidyanathan,“Genomicsand Proteomics: A Signal Processor’s
Tour,” IEEE Circuits andSystemsMagazine,pp.6-28,2005

[5] M. Pop,“ShotgunSequenceAssembly,” Advancesin Computers vol.60,
pp.194-248,2004

[6] M. T. Tammi, “The Principlesof ShotgunSequencingand Automates
FragmentAssembly,” Centerfor GenomicsandBioinformatics,Karolin-
skaInstitute,Stockholm,Sweden,2003

[7] S. Kim, “A Survey of ComputationalTechniquesfor GenomeSe-
quencing,” ProjectReportsupportedby KoreaInstituteof Scienceand
TechnologyInformation,2002

[8] F. Sanger, A. Coulson,D. Hill andG. Petersen,“Nucleotidesequence
of bacteriophagelambdaDNA,” J. Mol. Biol. ,162, 729-773,1982

[9] R. D. Fleischmann,et al., “Whole-genomerandom sequencingand
assemblyof HaemophilusinfluenzaeRd,” Sciencevol.269,Issue5223,
pp.496-512,1995

[10] E. W. Myers, et al., “A Whole-GenomeAssembly of Drosophila,”
Sciencevol.287,pp.2196-2204,2000

[11] E. S. Lander, L. M. Linton, B. Birren, et al., “Initial sequencingand
analysisof the humangenome,” Nature 409, pp.860-921,2001

[12] G. G. Sutton,et al., “TIGR Assembler:A New Tool for Assembling
Large ShotgunSequencingProjects,” GenomeScienceand Technology
vol.1, pp.9-19,1995

[13] D. Gordon,C. Abajain,andP. Green,“Consed: A GraphicalTool for
SequenceFinishing,” GenomeResearch 8, pp.195-202,1998

[14] X. Huang and A. Madan, “CAP3 : A DNA SequenceAssembly
Program,” Genomicsvol.9, No.9, pp.868-877,1999

[15] S. Batzoglou,D. B. Jaffe, K. Stanley, J. Butler, S. Gnerre,E. Mauceli,
B. Berger, J. P. Mesirov and E. S. Lander, “ARACHNE : a whole-
genomeshotgunassembler,” GenomeResearch 12, pp.177-189,2002

[16] S. Kim and A. M. Segre, “AMASS : A StructuredPatternMatching
Approachto ShotgunSequenceAssembly,” Journal of Computational
Biology vol.6 (4), 1999

[17] P. A. Pevzner, H. Tang and M. S. Waterman,“An Eulerian path
approachto DNA fragment assembly,” Proceedingsof the National
Academyof Sciencesof the USA, 98 (17), pp.9748-9753,2001

[18] P. A. Pevzner, H. Tang and M. S. Waterman,“A New Approach
to FragmentAssemblyin DNA Sequencing,” Proceedingsof The 5th
Annual InternationalConferenceon ComputationalMolecularBiology
(RECOMB 2001),pp.256-267,Canada.ACM Press.2001

[19] P. Green,“Phrap Documentation: Algorithms,” Phred/Phrap/Consed
SystemHomePage,http://www.phrap.org(currentFeb. 2006)

[20] 454 Life Sciences,http://www.454.com/(currentFeb. 2006)
[21] R. J.Parsons,S.ForrestandC. Burks,“GeneticAlgorithms,Operators,

andDNA FragmentAssembly,” Machine Learning21, pp.11-33,1995
[22] E. Alba, G. Luque and S. Khuri, “AssemblingDNA Fragmentswith

Parallel Algorithms,” IEEE Congress on Evolutionary Computation
2005vol.1, pp.57-64,2005

[23] J.RebeccaandM. E. Johnson,“DNA FragmentAssemblyandGenetic
Algorithms – New Results and Puzzling Insights,” appearedin the
Proceedingsof the 3rd InternationalConferenceon Intelligent Systems
in MolecularBiology, AAAI Press,pp. 277-284,1995

[24] H. Kitano, et al., Genetic Algorithm, Sangyo Tosyo, 1993, ISBN
4782851367

[25] J. D. Venter, et al., “The Sequenceof Human Genome,” Science
vol.291, Issue5507,pp.1304-1351,2001

[26] K. Mita, et al., “The GenomeSequenceof Silkworm, Bombyx mori,”
DNA Research 11(1), pp.27-35,2004

[27] M. Machida,et al., “GenomeSequencingandanalysisof Aspergillus
oryzae,” Nature 438, pp.1157-1161,2005

[28] J. SetubalandJ. Meidanis,introductionto ComputationalMolecular
Biology, PWSPublishingCompany, 1997,ISBN 0534952623

[29] G. B. Fogel andD. W. Corne,EvolutionaryComputationin Bioinfor-
matics, MorganKaufmann,2002,ISBN 1558607978

[30] Z. Michalewicz, Algorithms+ Data Structures= EvolutionPrograms,
Springer-Verlag,1999,ISBN 3540606769

[31] M. Pop,S. L. Salzberg andM. Shumway, “GenomeSequenceAssem-
bly, Algorithms andIssues,” Computers 35(7), pp.47-58,2002


