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Abstract- A new crosswer technique, we named Rank
and Proximity BasedCrossaer (RPC), to improve the
speedand quality of solutionsin Geneticseaich, is pro-
posed.In the proposedstrategy, the probability of cross-
over is more when the rank of two chromosomesare
both high, and they are closely located in the search
space. This probability is again a function of the gen-
eration number. In the early stage of genetic search
the crosswer is independent of the rank and proxim-

ity of the partners. Thus, crosswer takes place be-
tween any two chromosomesselectedfor crosswer, to

enable exploration of diverse locations of the problem
space. With advancing generations, RPC probabilis-
tically encouragescrosswer between chromosomesof
higher ranks which are closely located in the search
space. This ensures avoidance of disruption of good
chromosomesby crosswer, when prospectie locations
are found, and thus achievesmuch faster corvergence.
Differ ent schemef this probability function are tried

and evaluated, and cornvergenceefficiency is compared
with other competitive algorithms.

Keywords:- GeneticAlgorithm, Crosswer, Fitness,Selec-
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1 Intr oduction

“Genetic Algorithm (GA) is a searchalgorithm basedon
themechanic®f naturalselectiorandnaturalgeneticsT1].
They are superiorbecause(1) of wide applicability and
malke few assumptionfrom the problemdomain, (2) and
arenot biasedtowardslocal minimums. At the sametime
GAsarevery efficientto directthesearchowardsrelatively
prospectre regionsof the searchspace.

In GA, onehasto generatea pool of initial encodedso-
lutions (also called chromosomesf the problem. A fit-
nessfunction hasto be definedto measurehe goodnes®f
thoseencodedsolutions. Thengeneticoperatorsselection
crosswer and mutationoperateon the populationto gen-
eratenew population(new setof solutions)from the old
ones. Good solutionsare selectedwith greaterprobabil-
ity to next generation,n line with the ideaof survival of
the fittest Crosswer operationrecombinesselectedsolu-
tions, by swappingpart of them, producingdivergentsolu-
tionsto explorethe searctspace An occasionamutationis
doneby flipping thevalueatrandompositionof theencoded
chromosometo facilitate jumping of solutionsto new un-
exploredregions.As thealgorithmcontinuesandneverand
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newer generationgvolve, the quality of solutionsimprove.

Marny stratgies for fithess calculation, selection,
cross@er andmutationare proposed.In Standardsenetic
Algorithm (SGA), afterselectiona subsebf chromosomes
arerandomlychoserfor crosseer, andformswhatis called
crosswer pool. Pairs of memberdrom the crosseer pool
are randomly chosenand part of the encodedstrings are
swapped,until all membersof cross@er pool are crossed
over. Thisnew crossedver memberslongwith therestof
thoseselectedorm the previous populationform the new
generation. Occasionallya bit from a randomly selected
chromosomas flipped, with a probability p,,,, to jump to
yetunexploredregionsof the searchspace.

For succes®f GA thetwo aspectf (1) populationdi-
versity i.e. to explore the differentregions of the search
spaceand(2) selectve pressure.e. to getto the optimum
pointin aregion, haveto beproperlytakencareof. In SGA,
the bestfew membersof the initial populationcould pre-
dominatethe whole populationin a few cyclesdueto their
much betterfithessesand thereforehigh chanceof getting
selected. This would resultin poor exploration and pre-
maturecornvergenceto suboptimalminimum. On the other
hand,at the later stageof the searchwhenthe high perfor
manceregionsareidentified,fine local tuning is necessary
to getto the solution, especiallyfor high precisionprob-
lems. It is difficult to achieve this by SGA becausef dis-
ruption of goodchromosomesfter cross@er with the bad
onessituatedat distantlocationsof the searchspace. The
ideaproposechereis to improve this situation.

A numberof stratgjieswereproposed2](chapter4 and
6) to overcomethis problemby settinga balancebetween
diversity (during the beginning) and selectionpressuregat
the end). We briefly discussthis before introducing our
ideasfor improving selectionpressure.

Oneof the early proposalwasto scalethe fitnessfunc-
tion [1] (pp. 122-124)aswe go from initial to final stage
of geneticsearch.To sustaindiversityin the beginning,the
fitnessesare scaleddown so that the influenceof high fit-
nessis diminishedin the selectionstage.At thelater stage
of searchwhenmostof thechromosomebave similarand
highfitnessesareversescalingis doneto accentuat¢heef-
fect of higherfithessandthusfacilitating selectionof only
bestchromosomefor fastercorvergence.

Ranking of the chromosomesaccordingto their fit-
nessesandnot usingthe exactvaluesof their fithessedor
selection,is anotherway of scalingof fithesseghroughout
all generationso achieve the samegoal.



In the approachnamednon-uniform mutation [4], at
later stageof generationamutationsare probabilistically
performedmoretowardsthetail partof the codedchromo-
somesThisis to avoid disruptingagoodchromosomérom
its presentlocation by changingbits at the headpart (as-
sumingthatthey aremoresignificantbits). Anotherclassof
proposalss to adaptvely changghecrosseer (p.) andmu-
tation (p,,) probabilities[3] [5] [6] [7]. In [6] the bestfew
chromosomearedisruptedwvith muchlessprobabilitythan
thosewith weakfitnessesThustheweakchromosomeare
usedfor explorationof differentregions,andthegoodones
to find theoptimumlocations.

We hereproposea new crosseer stratgy and namedit
rankandproximity basedcrosseer (RPC).In our previous
work [9], we proposedonly rank basedcross@er - where
the resultswere not much betterthan fitness-scaling. In
this RPC stratgyy, thoughtwo chromosomesarerandomly
choserfor crosseer, the probability thatthe crosswer ac-
tually takes place,dependson how far they arein the fit-
nessscale,andtheir relative proximity in the searctspace.
The nearerthey are, moreis the probability that they will
be crossedover. Initially this rangeof nearnesgsoversthe
whole of the fithessscaleand searcharea,so that all ran-
domly chosenpairs are crossedover, to allow exploration
of differentregionsof the searctspace.Slowly whengood
regions are discovered,we allow crosseer betweenchro-
mosome®f similar rankonly whentheir fithessesrehigh.
Thengoodsolutionsrecombingfastto find the optimumlo-

cation. The probability function changesvith generations.

Underthisschemegverytimetwo chromosomearepicked
up for crosseer, the actualcrosseer may not be executed.
The numberof crosseerstried (X;) andthe numberof
cross@ersexecuted X ) aredifferent.Duringinitial gener
ationsX; ~ X,, butattheendX; > X,. In thesimulation
wesetX, = p.x P, wherep, istheprobabilityof crosseer
andP is the populationsize.

As we see,RPCdoesnotimprove over SGA for explo-
ration. It improvesthe speedof cornvergenceandthereby
quality of solutiondueto strongerselectionpressureat the
endgenerationsRPCalsofacilitatestuning this rangevery
easily It hasto bekeptin mindthatthoughthemotivationof
scaling,adaptve p, andthe proposedRPCaresame these
threestrat@iesarenotcompetitve andactuallyall couldbe
simultaneouslysedto improve the performancef genetic
search.

In the next section2 we describein detail our proposed
rankand proximity basedcrosswer (RPC).In section3 we
presentexperimentalresultsto shawv that whenRPC strat-
egy is usedgeneticsearchcould deliver betterresultsmore
efficiently, comparedo standardyeneticalgorithm(SGA),
SGA with fitnessscaling. Conclusionsaandfuture research
plansarediscussedn section4.

2 Rank BasedCrosswer

2.1 The RPC algorithm

The basic stepsof the algorithm of geneticsearchusing
RPCis describedn pseudocod®elown. Firstthe notations

areexplained.

g . generatiomumber

G : maximumgeneration.

P : populationsize.

m; : it" memberof the population.

fi, F1ro7 ¢ fitnessandnormalizeditnessof m;.
II(g) : setof chromosomeatgeneratiory.
IT"(g) : setof chromosomesfterselection.
IT'(g) : setof chromosomesftercrosseer.

Pe, Pm - Probabilitiesof cross@erandmutation.
X. : numberof cross@ersexecuted.

©*(), ¥?(),and| |: functionsareexplainedbelow.

Algorithm RPC (g, G, 11(g), P, pc, pm )
01begin

02 g=0;

03 Createnitial populationII(0);

04 Fitnessevaluationof m; € I1(0);
05 while(g < Q)

06 g:=g+1;

07 I"(g) "L T(g-—1);

08 while (X, < p.x P)

09 Selectm;(g), m;(g) randomlyfrom II" (g);

10 if (f°"(g) is high)

11 if((" (£ (9) — £7°"(9)) > rand(0,1))A
(#* (| mi(g) —m;(g) |) > rand(0,1)))

12 m;(g) andm;(g) arecrossedver;

13 elseif (' (f7°"(g9) — f7°"(9)) > rand(0,1))

14 m;(g) andm;(g) arecrossecver;

15 endif

16 endif

17 endwhile

18 I(g) ™EET ()

19 endwhile

20end

The basicstepsof RPC strateyy differ from SGA from
step08to 17,in theprocesof crosswerdecision.Firstthe
fitnessof all membersn 1" (g) arenormalizedto a value
fromOto 1. If f;(g) bethefitnessof memberm;(g), the
normalizedfitnessdenotedy f*°"(g) is,

nor _ fz(g) - fmin(g)
TE7(90) = s (g — frm(g)

where, f™2(g) and f™"(g) are the maximum and the
minimumfitnessof all thememberf 11" (g).

We denotethe normalizeddistance| m;(g) — m;(g) |
betweentwo membersof the population,m; andm;, as
follows. Supposehe searchspaceis d-dimensional. We
representhe chromosomes; andm; as:
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Two randomly selected chromosom8g | M;

with fitnesses; and f; . At later stage their
crossover probability will be decided as follows
Y
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Figurel: Cross@er probabilitywith RPC:effective only at

endpart of the geneticsearch.CONDITION 1 is satisfied
when both chromosomesre of high fithessand are close
in the searchspace whereasCONDITION 2 is whenthey

are not close. CONDITION 3 is satisfiedwhen both the
chromosomesreof low fithess,andCONDITION 4 when
only chromosome-is of low fitness.

where,ry, is therangeof thesearchspacen the k** dimen-
sion. We usedManhattandistancebetweenthe locations
of two chromosomeswhich is normalizedby dividing the
rangein the correspondinglimension.Finally it is divided
by d, sothatthe valueof | m;(g9) — m;(g) | alwayslies
betweerDto 1.

Theconditionpartof thewhile statemenin line 08 of the
Algorithm RPC ensureghat numberof crosseer is taken
place,in spite of the fact that all cross@erstried are not
successful.Two memberdrom I1”(g) are selectedat ran-
dom (line 09) for cross@er. In line 10, the condition part
of theif statements (f/*°"(g) is high). Thevalueof highis
setat0.7duringourexperiments Dependingnwhethemwe
still wantmoreexplorationsor we needmoreselectve pres-
sureduringtheendgenerationsywe cansethighto lower or
highervalues. We can even changeits value from low to
high asgeneratiorprogresses.

If f°7(g) is high, andthefithessesindlocationsof the
two chromosomeareclose(conditionof theif statemenin
line 11), thenthereis ahigh probability (only aftersuficient
numberof generation®f searchis over) thatthe crosswer
will take place(line 12). Else,if f*°"(g) is low, andthe
fitnesseof thetwo selectecchromosomesp; andm; are
close(conditionof theif statemenin line 13),thecrosseer
will take placewith high probability. If the fithessesare
not close,i.e., the fitnessof m; is high, the probability of
crosseer is low (to avoid disruptinga good chromosome
m;). Thisalgorithmis describedn Fig. 1.

2.2 How RPC is madeeffective only when g ~ G?

Lettheirnormalizeditnesse®f m; andm; aref*°"(g) and
f7°"(g). Functionp' (f7°"(g) — f7°"(g)), first partof the
if conditionin line 11, is of thefollowing form,

e (f7(9) = f77(9) =

cop l_ % (fﬁ”(gz (—g )f;W(g) ) ]

The shapeof ! is sameas the normal function with
maximum= 1 at f/"*"(g) = f7°"(g). The valueof ¢'
decreaseasthe difference(f/**"(g) — ] (g)) increases.
Finally, as written in line 11 of the Algorithm RPC, the
crosseer is possibleonly whenp! > rand(0,1) (AND-
ing with the otherpartof theif condition).Hererand(0,1)
is a randomreal numberbetweenO and 1. The closer
are f"°"(g) and f1°"(g), moreprobableis their crosswer.
@' (f°"(g9) — f7°"(g)) is shavn graphicallyin Fig. 2, for
g = 1000 andg = 9000. Here,G is setto 10,000.t is easy
to seethat RPCis effective only wheng ~ G. How this
changeof ¢! isimplementedis explainedin section2.3.
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Figure 2: Function ' (f"(9) f1""(9)), when G =
10,000, = 2

Exactlysimilaris the? function,whichis theotherpart
of theif conditionin line 11,

©*(| mi(g) —m;(g) |) =

1 (|mi(g) —m;(g) |\
e“’l 2( o(9) )]

Thus, more closely the two chromosomesare in the
searchspacegreatemwill bethevalueof x? function.

2.3 Function o(g) that tunes ! and p? and thus RPC

Thetuningof theeffectivenesof RPCis doneby introduc-
ing anotherfunction o(g), afunction of g thatcontrolsthe
varianceof ¢. In the beginning,wheng is low, o(g) ~ 1,
andthusallowing crosser for ary randomlyselectedpair
fromIT” (g). Whenyg is largeandnearingG (themaximum
generation)o(g) becomessmall. The way o(g) changes
with generationss shovn in Fig. 3. Wheng ~ G, ¢! and
©? becomesharperasshawvn in Fig. 2, allowing only pairs



with closerfitnessand proximity to cross.Functiono (g) is
definedasfollows:

o =1- 5]

wherea and ) are the controlling parameters.Fig. 3 is
dravn with A = 1.1 anda = 2,1, 0.5. In our experiments
too we usedthesethreedifferentvaluesof a.
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Figure3: Functiono (g) for differenta

Whena > 1, o(g) changesslowly in the beginning
(wheng is low) andrapidly afterwards. Thuslots of explo-
rationis donein the beginning, whereagapid corvergence
is forcedat the end. On the otherhand,whena < 1, the
selectionpressurds high almostfrom the beginning. For
simplesearchproblem,this would find the optimumresult
fast, but may missthe global maximumfor complex mul-
timodal functions. Whena = 1, o(g) decreasefinearly.
The efficiency andsucces®f the algorithmdependsome-
whatonthecomplity of thesearctspaceandcorrespond-
ing properchoiceof a. We will seethata = 1, i.e. linear
decrementf o (g) is agoodchoicefor all situations.In gen-
eralwe will shawv by severalexperimentshatRPCstrateyy
works muchbettercomparedo SGA aswell asSGA with
“linear fitnessscaling”.

3 Experimental Setup and Results

Theeffectivenesof ouralgorithmis demonstratedy solv-
ing maximizationproblemfor severalunivariateandmulti-
variatemultimodalfunctions.Dueto spaceconstrainthere
we discussresultswith only four functions, f; to f4, as
shawvn in Fig. 4 andlistedin Table.1. All arewell known
benchmarKunctions.

3.1 Simulation Parameters

As mentionedearlier we implementedStandardGenetic
Algorithm (SGA), SGA with liner fitnessscaling,and our

Figure4: Graphsof functions f; and f» andexperimental
results



EpistaticMichalewicz’s func:
GeneralizedRosenbrocKunc:

Schwefels function:

Generalizeddckley’sfunc:

fa=-— (20 +e—20e 02V Xivien Xl cos(2mi))

f1=>00 sin(z;) sz‘n"’“(%) n=>5,0<uxz; < mazr = 3.698857
fom= Y00 (1 — 25)? 4100 (wig1 — 2:2)?)

fi=— (418.9829n + S —; sin (,/|m,~|))

n=>5,5.12<z; <5.12,max =0
n =5, 500 < z; < 500, max =0

n=29,—20<z; <20,mazx =0

Tablel: Functionsusedin the experiment

proposedGA with RPC.For RPC,we usedthreedifferent
functionsfor o(g) with @ = 0.5, @« = 1.0 anda = 2.0.
Thereforejn total we compareresultsof 5 differentimple-
mentationsThefollowing parametersreheld constanfor

all runs.
Probabilityof crosseerp. = 0.6

Probabilityof mutationp,,, = 0.03
Populationsize= 100
Onepoint cross@er methodis performed. Becauseve

usedthe maximumnumberof generationasthe stopping
criterion, we have performedour experimentswith three
different maximum generationnumbers(G) as shavn in
Table.2. Independent0 runswith different randomini-
tial populationswere donefor each3 casesof maximum
numberof generationslnitial populationis samefor all the
five differentalgorithms but aredifferentin the 50 different
runs. Thefollowing resultsin the next sectionareaverages
over50independentuns.

3.2 Analysis of results

Of the differentanalysiswe did, we presenthereonly two
mostsignificantresults.

1. Theaverage(over 50 runs)of bestfithnessvalueup to
acertainnumberof generationgFig. 5), and

2. The numberof times a certain algorithm could hit
its reachablanaximumfitnessandthatvalue (which
may be muchlessthanactualmaximum)at the end
of G generationgTable.2).

By (1) wecouldseehow fastthecorvergences achieved
andby (2) we canjudgethe probability of reachingthetar
get.

In Fig. 5, the bestfitnessvaluesfound until thatgenera-
tion is plottedagainstthe numberof generationsfor func-
tions f; to f4 respectiely (resultfor f; atthetop,andf, at
the bottom). The actualmaximumvaluecalculatedanalyti-
cally is mentionedn Table.1.

Fromtheresultst is evidentthattheproposedRPCstrat-
egy couldreachbetterquality of resultsfaster comparedo
SGA aswell asSGA with fithessscaling. Resultsobtained
using RPC, thoughalmostsimilar for differenta values,
from variousresults(all are not shawvn here)we conclude
thata = 1.0 is agoodchoicefor every occasion.

Finally it is also seenthat using SGA or linear scaling
of fitness,only very few of the run could reachthe target
maximum. With RPCthetargetmaximumis reachednore
oftenasshawvn in Table.2. In Table.2, the averageis the

SGA Scale a=0.5 a=1 a=2

Average=> 3.69714 | 3.69266 | 3.69885 | 3.69874 | 3.69885
no. of genl}
100 0 0 6 6 5

f1 5000 1 4 7 11 3
10000 5 13 12 8 14
Average= -26.218 | -3.734 2.7588 | -2.2554 2.4564
100 0 0 1 0 0

f2 5000 0 0 4 5 0
10000 0 4 3 4 4
Average= -45.724 | -2.2102 0.1749 0.1999 0.173
100 0 0 0 0 0

f3 5000 0 0 2 0 0
10000 0 0 1 2 3
Average=> -2.98 -0.439 0.0945 0.104 0.202
10000 0 0 3 0 0

fa | 20000 0 2 3 3 3
30000 0 0 2 3 4

Table2: Averagedfitnessandno. of timesreachingoptimum

averageof bestvalue of 50 runswith highestG (for f; to
f3 G = 10000, andfor f4 G = 30000). The otherentries
in the table shavs the numberof timesthe geneticsearch
couldreachglobal optimumout of 50 trials.

4 Conclusions

A new partner selectiontechniquefor cross@er opera-
tion has beenintroducedfor geneticalgorithm searches.
Crosseer partnersrandomlyselectedrom populationare
allowed to performcrosseer only probabilisticallyandis
controlledby a function. The probability function which
controlsthis permissionis very wide in the beginning, al-
lowing ary two randomlyselectedmemberdo be crossed.
But slowly, with progressinggenerationsthis function be-
comesnarraw, allowing membersonly with closefitnesses
andproximitiesto becrossed Simulationresultswith func-
tionsof differentcompleity shav thatthebestfithesschro-
mosomesare createdwith higher probabilitiesusing RPC
stratey.

The motivation of more explorationin the beginning of
the searchand high selectve pressureat the end of the
searchwasachievedin anumberof previousresearchef3]
[4] [5] [6] by adaptire changesof cross@er and mutation
probabilitiesallowing more cross@er and mutationin the
beginningandlessat theend. In all previousworks, selec-
tion pressurés controlledin theselectiorstage py manipu-
lating fitnessesWe improve corvergenceby selectingwho
shouldcrossedover with whom. It shouldbe emphasized
that our RPC stratgy hasno betterexploration capability
thanstandardSA. But it couldbe usedin conjunctionwith
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Figure5: Averageof bestfitnessvaluesversusnumberof
generationg,esultsfor functionsf; to f4 in order f; attop.
Here, symbolscircle (O) for SGA with scaling,cross(x)
for SGA, triangle (A) for a = 2.0, squae () for a = 1.0,
anddiamond(¢) for « = 0.5 areusedto indicateresults
obtainedusingfive differentimplementations.

otherideaswhereexplorationsare emphasize@ndprema-
ture corvergenceis avoided,andto seewhethertheresults
arefurtherimproved.

Dependingnthenatureof thesearchspacetherewould
be anoptimumchoicefor a. It is evidentthatfor comple
searctproblemsahighervalueof a > 1.0 is abetterchoice
for allowing longer explorationin the beginning. On the
otherhand,for simple problems,a. < 1 will work faster
We arealsoworking on finding a way to adaptvely setthe
value of o with growing generations.The initial value of
« would be setto 1, andfrom the analysisof the natureof
change®f fitnessvaluesof the differentmembersit would
take to its optimumvalue.
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