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Abstract— A novel artificial neural network (NN)-based tech-
nique is proposed for enabling smart sensors to operate in
harsh environments. The NN-based sensor model automatically
linearizes and compensates for the adverse effects arisingdue
to nonlinear response characteristics and nonlinear dependency
of the sensor characteristics on the environmental variables.
To show the potential of the proposed NN-based technique,
we have provided results of a smart capacitive pressure sensor
(CPS) operating under a wide range of temperature variation.
A multilayer perceptron is utilized to transfer the nonlinear
CPS characteristics at any operating temperature to a lin-
earized response characteristics. Through extensive simulated
experiments, we have shown that the NN-based CPS model can
provide pressure readout with a maximum full-scale error of
only ±1.5% over a temperature range of −50 to 200

0
C with

excellent linearized response for all the three forms of nonlinear
dependencies considered. Performance of the proposed technique
is compared with a recently proposed computationally efficient
NN-based extreme learning machine (ELM). The proposed MLP-
based model is tested by using experimentally measured real
sensor data, and found to have satisfactory performance.

Keywords
Intelligent and smart sensors, artificial neural networks,pres-
sure sensor, linearization, auto-compensation, harsh environ-
ment.

I. INTRODUCTION

Sensors are widely used in industrial processes, automo-
biles, robotics, avionics and other systems to monitor and con-
trol the system behavior. Besides, the use of precise, accurate
and low power sensors has recently emerged in many sensor
network applications. Capacitive sensors, because of their high
sensitivity and low power consumption, are extensively used
in various applications to measure pressure, force, position,
speed, acceleration, liquid level, dielectric propertiesand flow
of materials. However, some of the drawbacks of capacitive
sensors are that: (i) the change in capacitance of the sensordue
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to applied pressure is small compared to the offset capacitance
and (ii) their response characteristics are highly nonlinear.

Another problem associated, in general, with all sensors
is that, their response characteristics are influenced by the
disturbing environmental parameters, e.g., temperature,hu-
midity and pollution. For example, in case of a capacitive
pressure sensor (CPS), its response depends not only on the
applied pressure but also on the environmental temperature.
This problem becomes severe, especially when the capacitive
sensor is operated in a harsh environment where temperature
variation is large.

Usually, an exact mathematical model of a sensor showing
the relationship between the measurand and its response, and
the dependency of sensor output on environmental parameters,
is not available. Further, since most of the sensors exhibitsome
amount of nonlinear response characteristics, and the environ-
mental parameters influence the sensor behavior nonlinearly,
the problem of obtaining an accurate readout and its calibration
becomes highly complex. Some of the ideal properties of a
sensor include linear response characteristics, auto-correction
for the adverse effects of nonlinear environmental parameters,
high sensitivity and accuracy, and low power consumption.
However, in practical situations, it is not easy to achieve ideal
sensor characteristics, especially when the sensor is operating
in a harsh environment.

In order to obtain an accurate and precise readout from
a CPS the adverse effects of the environmental parameters
and nonlinear characteristics are required to be suitably com-
pensated. In this direction, for compensation of offset capac-
itance, temperature and auto-calibration, switched capacitor-
based techniques [1], [2], and ROM and over-sampling delta-
sigma demodulation techniques [3], [4] have been reported.
Some of the digital signal processing-based techniques, both
iterative and non-iterative, for pressure sensor linearization
and compensation are found in [5]-[7]. To reduce the com-
putational load, a non-iterative 2-dimensional calibration and
linearization technique [8] and a microcontroller-unit (MCU)-
based self-calibration technique [9] have been reported. Two
analog linearization methods for capacitive pressure sensors
have also been proposed [10]. The first method uses the feed-
back from output to control the excitation voltage while the
second method uses a push-pull capacitive structure, in which
a pair of pressure-sensitive capacitors operate in a push-pull
configuration. An FPGA-based adaptive thermal compensation
of strain gauge sensors is reported in [11], in which it is shown
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that Newton’s algorithm is more suitable for offset compensa-
tion in shock measurement. A self-calibration and linearization
algorithm for smart sensor applications based on a progressive
polynomial method and an optimal choice of calibration points
have been suggested in [12]. These techniques provide limited
solutions to the complex problem under the assumptions that
the range of variations of environmental parameters are small
and the influence of environmental parameters on the sensor
characteristics is linear.

Recently, artificial neural networks (NNs) have emerged
as a powerful learning technique to perform complex tasks
in dynamic and nonlinear environments. These networks are
endowed with unique capability of universal approximation
and the ability to learn from and to adapt according to their
environment. Another important property of the NNs is their
fault-tolerance capability, which allows graceful degradation of
performance when the network is partially damaged. Because
of these characteristics numerous successful applications of
NNs are found in various fields of science, engineering and
industry [13], including instrumentation and measurement
[14], [15].

It is shown that the NN-based approximations for mea-
surement data perform much better than those of classical
methods of data interpolation and least mean square regression
[16]-[18]. Application of NNs with superior performance in
compensation for environmental dependency and nonlinear-
ities of sensor characteristics of pressure sensors [19]-[21],
magnetic field measurement [22] and ultrasonic distance mea-
surement [23], have been reported. An NN-based technique
to compensate for the nonlinear interference of structuraland
geometrical parameters in a differential eddy-current displace-
ment transducer with satisfactory results has been reported
[24]. An NN-based fault detection scheme for Wheatstone
bridge transducer [25] and NN-based compensation scheme
for disturbing parameters in a strain gauge transducer by taking
a small range of disturbances have been reported [26].

In some of the earlier reported works [19]-[21], we have
shown the effectiveness of NNs in auto-calibration and com-
pensation for adverse effects of linear and nonlinear influences
of disturbing parameters. We have shown that the NN-based
models are quite effective and capable to provide accurate
readout when the sensor operates in a harsh environment
with wide variation of surrounding temperature. However, in
these NN-based techniques, the main emphasis was to fit the
nonlinear response characteristics data most accurately even if
the sensor characteristics changes under the influence (linear
or nonlinear) of the disturbing parameters (e.g., temperature).
These works were concentrated in finding a neural model to
obtain the sensor response accurately under the influence of
linear or nonlinear disturbing parameters. The important issue
of linearization was not considered in those papers.

Typical response characteristics of a CPS operating at
different temperatures is shown by the upper five curves in
Fig. 1. The middle curve (solid line) represents the sensor
characteristics at normal temperature of250C. Due to non-
linear influence of the disturbing parameter (in this case,
the temperature) the sensor characteristics change drastically
from the normal operating temperature of250C. It is always
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Fig. 1. The concept of linearization for a sensor.

desirable to have linear response characteristics for a sensor/
transducer. It makes the measurement and calibration quite
simple. It implies that the sensor/ transducer response canbe
given by y = mx + c, where y is the transducer response
(e.g., voltage or current),x is the measurement variable (e.g.,
pressure),m is the slope (sensor gain) andc is a constant.
A true linear characteristics is obtained whenm = 1 and
c = 0 (the bottom straight line in Fig. 1). In the case of
a sensor, a true linear characteristics is most desirable, as it
makes calibration, validation and fault detection quite easy and
consequently a correct readout becomes quite simple.

However, obtaining a true linear characteristics is not an
easy task. It becomes more complex when the disturbing pa-
rameters (e.g., temperature) influence the sensor characteristics
nonlinearly. In this direction, a linearization techniqueusing a
simple multilayer perceptron (MLP) for a temperature sensor
(a negative temperature coefficient resistor) has been reported
[27]. Here, a linearization of 0.5% was obtained, but only
for a small operating range of600C. Besides, the effect of
disturbing environmental parameters were not considered.In
our earlier papers [19]-[21] the emphasis was to employ the
NNs to estimate the sensor’s nonlinear response characteristics
accurately (upper curves in Fig. 1). However, in the current
paper the focus is to use the NN to obtain an exact linear
response characteristics for a sensor (the bottom solid straight
line in Fig. 1).

In this paper, we present a novel NN-based technique to
develop an intelligent pressure sensor that can provide true
linear response characteristics. Here, we have shown that the
proposed NN-based CPS sensor model can provide a true
linear response characteristics even if the CPS is operated
in a harsh environment with a wide variation of temperature
ranging from−50 to 2000C. In addition, we have assumed that
the CPS response characteristics are nonlinearly influenced
by the environmental temperature. The proposed MLP model
achieves the true linear response characteristics (as shown
in Fig. 1) which is independent of the nonlinear sensor
characteristics and its nonlinear dependency on the environ-
mental temperature. Through extensive computer simulations,
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we have shown that the maximum full-scale (FS) error remains
within ±1.5% under wide possible operating conditions, by
using three forms of nonlinear dependencies.

The rest of the paper is arranged as follows. Section II
presents a brief theoretical background of the CPS and the
switched capacitor interface. Section III provides details of the
proposed MLP-based sensor modeling scheme. Brief descrip-
tion of a recently proposed NN, the extreme learning machine,
is provided in Section IV. Extensive simulated experimentsare
detailed in Section V. Section VI provides the performance
evaluation and discussions on the results of the experiments.
Performance comparison between the MLP- and extreme
learning machine-based sensor linearization schemes is also
made in this section. The details of an experimental setup
to measure data from a force sensor and the performance
results of the proposed MLP-based model with these data are
provided in Section VII. Finally, conclusions of the present
study are summarized in Section VIII.

II. CAPACITIVE PRESSURE SENSOR AND
SWITCHED CAPACITOR INTERFACE

A capacitive pressure sensor (CPS) senses the applied
pressure in the form of elastic deflection of its diaphragm. The
capacitance of the CPS resulting from the applied pressureP
at the ambient temperatureT is given by [3]:

C(P, T ) = C0(T ) + ∆C(P, T ), (1)

where∆C(P, T ) is the change in capacitance andC0(T ) is
the offset capacitance,i.e., the zero-pressure capacitance, at
the ambient temperatureT . The above capacitance may be
expressed in terms of capacitances at the reference tempera-
ture,T0 as:

C(P, T ) = C0(T0)f1(T ) + ∆C(P, T0)f2(T ), (2)

where,C0(T0) is the offset capacitance and∆C(P, T0) is the
change in capacitance, at the reference temperature,T0. The
nonlinear functions,f1(T ) and f2(T ), determine the effect
of temperature on the sensor characteristics [3]. This model
provides sufficient accuracy in determining the influence of
temperature on the sensor response characteristics.

The capacitance change in the CPS due to applied pressure
at the reference temperatureT0 is given by [3],[4]:

∆C(P, T0) = C0(T0)PN

1 − τ

1 − PN

, (3)

where τ is the sensitivity parameter,PN is the normalized
applied pressure given byPN = P/Pmax, and Pmax is
the maximum permissible applied pressure. The parameters
τ andPmax depend on the geometrical structure and physical
dimensions of the CPS. Since∆C(P, T0) becomes very large
asPN approaches1, in practice, the value ofPN is normally
kept within 0.9.

In this study, in conformance with practical conditions,
we have considered that the ambient temperature nonlinearly
influences the CPS characteristics. In order to study the non-
linear dependence of ambient temperature, we assumed that
the capacitance change in a CPS is influenced by a nonlinear

function which is a third order polynomial of normalized
temperature. The nonlinear dependency functionsfi(T ), i =
1 and2 may be expressed as:

fi(T ) = 1 + gi(T ), (4)

where

gi(T ) = κi1TN + κi2T
2

N + κi3T
3

N , (5)

and the normalized temperature,TN is given byTN = (T −
T0)/(Tmax −Tmin). The maximum and the minimum operat-
ing temperatures are denoted byTmax andTmin, respectively.
The coefficientsκij , wherei = 1 and2, andj = 1, 2, and3,
determine the extent of nonlinear influence of the temperature
on the sensor characteristics. Note that whenκij = 0 for j = 2
and3, the influence of the temperature on the CPS response
characteristics becomes linear.

The normalized capacitance at any temperatureT may be
expressed as:

CN = C(P, T )/C0(T0). (6)

This may be expressed using Eqns. (2) and (3) as:

CN = f1(T ) + γf2(T ), (7)

whereγ = PN (1− τ)/(1−PN ). Because of the requirement
of the proposed NN modeling,CN in (7) is divided by a scale
factor (SF) of2, so as to limit its value within1. The value of
γ becomes zero when the applied pressure is zero. Therefore,
the normalized zero-pressure capacitance,i.e., the normalized
offset capacitance at any temperatureT , is given by:

CN0 = f1(T ) = 1 + g1(T ). (8)

By choosing appropriate values ofκij and using (2)-(7),
one can simulate the CPS characteristics that is nonlinearly
influenced by the ambient temperature.

A switched capacitor interface (SCI) for the CPS is shown
in Fig. 2, where the CPS is represented byC(P ). The SCI
output provides a voltage signal proportional to the capacitance
change in the CPS due to the applied pressure. The SCI
operation can be controlled by a reset signalθ. When θ̄ = 1
(logic 1),C(P ) charges to the reference voltageVR while the
capacitorCS is discharged to ground. On the other hand, when
θ = 1, the total chargeC(P )VR stored inC(P ) is transferred
to CS producing an output voltage given by:

VO = K · C(P ), (9)

whereK = VR/CS . It may be noted that if the ambient tem-
perature changes, then the SCI output also changes, although
the applied pressure remains the same. By choosing proper
values ofCS andVR, the normalized SCI outputVN may be
obtained in such a way that

VN = CN . (10)
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Fig. 2. The switched capacitor interface circuit along withcapacitive pressure
sensor.

III. THE MLP-BASED CPS MODEL

The proposed MLP-based model uses an MLP for automatic
calibration and compensation for nonlinear temperature depen-
dency of the ambient temperature on the sensor characteristics.
In addition, it is trained to provide a linear response charac-
teristics. We know that the sensor characteristics of a CPS
is nonlinear and varies with the environmental temperature.
Further, the environmental temperature influences the response
characteristics in a highly nonlinear manner. The objective
here is to obtain a linear characteristics for the sensor that is
independent of its nonlinear characteristics and its nonlinear
dependency on environmental temperature.

In order to achieve this objective we utilize an MLP to
transfer the nonlinear sensor characteristics at any temperature
(the upper curves in Fig. 1) to a linear normalized sensor
characteristics (lower straight line in Fig. 1). Therefore, when
the surrounding environmental temperature changes, although
the nonlinear sensor characteristics change in a complex
manner due to the nonlinear temperature dependency, the pro-
posed MLP-based CPS model will always provide a linearized
response.

In the proposed MLP-based CPS model, all the signals are
suitably scaled by appropriate SFs to keep their range within
±1.0. The model operates in two phases: the training phase
and the test phase. In the training phase, the NN is trained to
learn the sensor characteristics and environmental dependency.
Several known datasets are needed to train the MLP. An input
pattern, and its corresponding target (also called the desired)
pattern constitute one pair of data in the dataset. The total
available datasets are segregated into two parts. The first part,
called training set, is used for training of the NNs, and the
other part called test set, is used to test the model for unseen
inputs to verify the effectiveness of the technique.

During the training phase, an input pattern from the training
set is applied to the NN and its output is computed. Then the
output is compared with the corresponding target pattern. The
error generated out of this comparison is used thereafter to
update the weights of the MLP by using the most popular
backpropagation (BP) algorithm [13]. This training procedure
continues until the error reaches a preset minimum value. Next,
the final weights are stored in an EEPROM. These weights are
used during testing and actual use of the sensor model.

In the second phase, the test phase, the stored final weights
are loaded into the MLP. An input pattern from the test set is

Normalized 
Output
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TN

+

_
Error

VN

(VLin)

V0

Linear Normalized 
Voltage

(YN)

Ambient 
Temperature  (T)

Applied
Pressure CPS

+
SCI(P)

+

SF
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Fig. 3. An MLP-based scheme for a capacitive pressure sensorto transfer the
response characteristics at any temperature to linear response characteristics.

applied to the NN model and its output is computed. If the
NN output and the target pattern match closely, then it may
be said that the NN model has learnt the sensor characteristics
satisfactorily.

To illustrate the effectiveness of the model for nonlinear
dependency of sensor characteristics on temperature, we have
chosen three forms of nonlinear functions denoted byNL1,
NL2 and NL3. A linear function denoted byNL0 is also
used for comparison purpose. These nonlinear functions are
generated by different sets of coefficientsκij in (5). In this
study, the temperature information is assumed to be available.
It can be obtained by using another temperature sensor. As the
sensor characteristics do not change drastically with a small
variation of temperature, the temperature sensor need not be
of high accuracy.

In the first stage, the MLP is trained to learn to transfer the
sensor characteristics at any temperature to the normalized lin-
earized response characteristics. The scheme for this is shown
in Fig. 3. Here, the inputs to the MLP consist of the normalized
temperatureTN and the normalized SCI outputVN (10).
The normalized SCI output refers to the capacitive pressure
transducer output which determines the pressure readout. For
a true linear response characteristics, the SCI output should
be linearly proportional to the normalized applied pressure.
Therefore, we choose the target outputVLin = mPN . During
the training phase the MLP attempts to produce an output
which is a good estimate of the target output. By changing the
value of the gain parameterm we can obtain the linearized
sensor characteristics with a different gain.

One dataset for a specific temperature is obtained by
recording the SCI output (VN ) for different values of applied
pressure at that temperature. Next, at different temperature
values, covering the full operating range, several datasets are
generated. The MLP is trained by taking the patterns from
the training set, and its weights are updated by using the BP
algorithm. After completion of the training, the MLP weights
are frozen and stored in an EEPROM.

In the present study, we have used an MLP with BP
algorithm for the sensor linearization application, because, the
MLP is robust and a time-proven NN architecture. However,
the major drawback of MLP is its large training time and
slow convergence. Therefore, it may not be suitable for on-
line applications. However, our main purpose in this study
is to highlight successful application of an NN to the com-
plex problem of sensor linearization and compensation. There
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are several other NN architectures, e.g., radial-basis function
(RBF) networks, support vector machines (SVM), Bayesian
networks, which may, however, be used for this application.
In the next Section, we briefly describe a computationally
efficient emerging NN architecture, extreme learning machine
(ELM). We used the ELM for the CPS linearization problem
and compared its performance with the MLP.

IV. EXTREME LEARNING MACHINE

The extreme learning machine is recently proposed by
Huang et al. [28]-[31]. It is a control-parameter-free powerful
supervised learning architecture and is capable of very fast
learning. Moreover, it has low computational complexity.
Therefore, it may be conveniently used for on-line applica-
tions. It is a two layer feedforward fully-connected neural
network in which the first layer weights and bias values
are selected randomly and independently from the training
dataset. During training phase, the weighted sum of the input
pattern is passed through the hidden layer nodes with a
piecewise continuous sigmoid nonlinearity. The output layer
weight matrix and the bias vector are directly obtained by
using pseudo-inverse technique from the output of the hidden
layer and the desired output. Huang et al. [28]-[31] have
shown that the ELM can be an universal approximator. More
details of ELM and mathematical treatment on ELM may be
found in [28]-[31]. We have applied ELM for the CPS sensor
linearization problem. Its performance comparison with the
MLP-based model is carried out in Section VI.

V. SIMULATION STUDIES

We carried out extensive simulation studies for performance
evaluation of the proposed MLP-based CPS model. In the
following, we describe the details of the simulation study.

A. Preparation of Datasets

All the parameters of the CPS, such as the ambient tem-
perature, the applied pressure, and the SCI output voltage,
used in the simulation study were suitably normalized to keep
their values within±1.0. Appropriate SFs were chosen for this
purpose. The datasets needed for training and testing of the
NN were generated as follows. The SCI output voltage (VN )
was recorded at the reference temperature (T0 = 250C) with
different known values of normalized pressure (PN ) chosen
between0.0 and0.6 at an interval of0.05. These13 pairs of
data (PN versusVN ) constitute one dataset at the reference
temperature.

To study the influence of temperature on the CPS char-
acteristics, three forms of nonlinear functionsNL1, NL2,
and NL3, and a linear formNL0 were generated, by using
(4) and (5). We selected values of theκij arbitrarily and
tabulated in Table I. Using these values, we observed that the
dependency functions introduce a large amount of nonlinearity
in the sensor response characteristics.

Next, with the knowledge of the dataset at the reference
temperature and the chosen values ofκij , the response char-
acteristics of the CPS for a specific ambient temperature were
generated using (7). The response characteristics consistof

TABLE I

THE VALUES OFκij FOR THE LINEAR AND NONLINEAR FORMS OF

TEMPERATURE DEPENDENCIES.

NL form κ11 κ12 κ13 κ21 κ22 κ23

NL0 0.10 0.00 0.00 0.20 0.00 0.00
NL1 0.25 -0.25 0.10 0.20 -0.40 0.40
NL2 0.30 0.10 -0.30 0.20 -0.20 -0.10
NL3 0.40 -0.15 -0.15 0.25 0.30 -0.60
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Fig. 4. Variation of normalized capacitance (CN at PN = 0.3) with tem-
perature for the linear and three nonlinear forms of temperature dependencies
(NL0, NL1, NL2 and NL3). The value ofCN changes nonlinearly with
temperature even thoughPN is fixed at0.3.

13 pairs of data (PN and VN ) and correspond to a dataset
at that temperature. For a temperature range from−500C to
2000C, at an increment of100C, twenty-six such datasets,
each containing13 data pairs, were generated. Next, these
datasets were divided into two groups: the training set and the
test set. The training set, used for training the NNs, consists
of five datasets corresponding to−50, 10, 70, 130 and1900C,
and the remaining twenty one datasets were used as the test set.
To illustrate the nature of the nonlinear forms of temperature
dependency, variation of the normalized capacitance (atPN =
0.3) with temperature forNL0, NL1, NL2 and NL3 are
plotted in Fig. 4. Note that even though there is no change
in applied pressure, the sensor’s normalized capacitanceCN

(and as such the SCI outputVN ) changes nonlinearly with
temperature. We believe that the above selected values of
κij (see Table I) provide adequate nonlinear influence of
temperature on the CPS characteristics and its complexity is
similar to that of practical situations. This is evident from
Fig. 4.

The sensor response characteristics at different temperatures
for the four forms of dependencies and the desired linear
response are plotted in Fig. 5. It can be seen that the response
characteristics of the sensor change nonlinearly over the tem-
perature range. Besides, the change in response characteristics
differs substantially for different forms of nonlinear dependen-
cies. However, it is important to note that, the sensor’s linear
response characteristics should remain the same in spite of
different nonlinear temperature dependencies and the changes
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in ambient temperature.

B. Training and Testing of MLP

A 2-layer MLP with {2 − 5 − 1} architecture was chosen
in this modeling problem (see Fig. 3). The number of nodes
including the bias units in the input, hidden and the output
layers are 3, 6 and 1, respectively. Thus, the MLP contains
only 21 weights. Each node of the hidden layer and the output
layer consists of a bipolar sigmoid nonlinear function. Thetwo
inputs to the MLP were the normalized temperature (TN ) and
the normalized SCI output voltage (VN ). The linear normalized
voltageVLin was used as the target output for the MLP.

Initially, all the weights of the MLP were set to random
values within±0.5. During training, the five datasets were
chosen randomly. Also, the individual patterns of each set were
selected in a random manner. After application of one input
pattern, the MLP produces an output. The output value was
compared with the target output to obtain an error value. This
error was then used to update the weights of the MLP using the
BP algorithm. The learning parameterα and the momentum
factor β (used in the BP algorithm) were selected as0.3 and
0.5, respectively. Completion of weight adaptation for the13
data pairs of all the five training sets constitutes one iteration.
For effective learning,100, 000 iterations were made to train
the MLP model. To improve learning of the MLP, the learning
parameter used in the BP algorithm was varied as:

αi = αi−1(1 − i/Nt), (11)

where i is the current iteration number andNt is the total
number of iterations used. Using a Pentium 4, 2.8 GHz
machine, it took only16 seconds to train the MLP with
100, 000 iterations. At the end, the final weights (W ) of the

MLP were saved for performance evaluation and actual use of
the model.

The convergence characteristics of the MLP for the different
nonlinear dependencies are shown in Fig. 6. It can be seen that
the mean square error (MSE) reaches at about -50 dB within
1000 iterations. However, for better learning, we continued
training up to 100,000 iterations.

Performance evaluation of the MLP-based sensor model was
carried out by loading the final stored weights into the MLP.
It may be noted that, during testing, and actual use of the
CPS model, updating of the weights does not take place. After
loading the saved weights into the MLP, when the inputs are
applied to the MLP model, it estimates the pressure readout.
The estimated pressure and the actual applied pressure were
compared to find the effectiveness of the model.

VI. RESULTS AND DISCUSSIONS

Based on the results of the simulation study, we provide
here the performance evaluation of the MLP-based model for
linearization and auto-compensation for the CPS. In addition,
we have provided the performance results of an ELM-based
CPS model.

A. Linear Response Characteristics

The MLP-based model was found to be capable of pro-
ducing linear response characteristics. The results obtained
through the simulation for the linear and three forms of nonlin-
ear temperature dependencies are provided in Fig. 7. The re-
sponse characteristics at different temperatures (−40, 100, 150
and 2000C) for NL0, NL1 and NL3 are perfectly linear.
However, in the case ofNL2, for lower ranges ofPN ,
there is a slight deviation from linearity. The upper curve
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Fig. 6. The convergence characteristics of the MLP for the four temperature dependencies. (a)NL0; (b) NL1; (c) NL2; (d) NL3.

which represents the sensor characteristics (SCI output) at the
reference temperature (T0 = 250C), is shown for the purpose
of comparison.

It may be noted that, during training phase, the MLP was
not trained with the sensor characteristics for the temperature
values in the test set. It may be observed from these figures
that the MLP is able to transfer SCI output voltage from the
actual to the linearized values quite effectively over a wide
range of temperature and for the linear as well as the three
forms of nonlinear dependencies. Moreover, it is true even for
the unseen situations for which it was not trained.

B. Full Scale Error

The full-scale percent error is used as a performance crite-
rion in this study. It is given by:

FS = [PNtru − PNest] × 100, (12)

where, the true normalized pressure and estimated normalized
pressure are denoted byPNtru andPNest, respectively. Here
the full scale is assumed to be1.0. The FS percent error in
estimation of normalized response at different temperatures for
the NL0, NL1, NL2 andNL3 are plotted in Fig. 8. It may
be seen that the FS error remains within±0.5% for a wide
range of temperature from−500C to 2000C (at the specified
PN values) forNL0, NL1, and NL3. However, forNL2,
the FS error varies between−0.75% to 1.5%.

The FS error between the estimated and desired responses
at specific values of temperature are shown in Fig. 9. From
Fig. 8 and Fig. 9 one can see that the maximum FS error
remains within±0.5% for the NL0 andNL1. The FS error
for NL2 remains between−0.75 and1.5%, and forNL3, it
varies between±0.75%.

The performance of the CPS linearization using an ELM
is carried out. In this case, we used10 hidden nodes with
sigmoid nonlinearity. We have observed that increasing the
number of hidden nodes does not improve the performance.
The FS percent error and the estimated output obtained from
an ELM-based model are shown in Fig. 10 and Fig. 11,
respectively. It is seen that the FS error in the ELM-based
model is slightly higher and its linearization is slightly inferior
to that of the MLP-based model. This may be due to the
fact that the selection of the input-layer random weight matrix
might not be a proper one.

The most important benefit of using ELM is its extremely
low computation time. The ELM-based CPS model took only
a fraction of second to train. Thus, it has a great advantage
over MLP-based model, as the latter took about 16 seconds to
train for 100,000 iterations. For this reason, the ELM-based
model may be used for on-line applications. In addition to
ELM, other NN architectures, for example, RBF and Bayesian
NNs may be studied. We believe that these NNs will provide
satisfactory performance results at higher computationalcost.

VII. EXPERIMENTAL SETUP AND RESULTS

In order to demonstrate the effectiveness of MLP-based
model on real sensor data, we collected data from a force
sensor with an experimental setup. In this section we briefly
describe the setup and show the necessary results.

A. Experimental Setup

The experimental setup to obtain sensor output at different
temperatures is shown in Fig. 12. We used a Celoxica RC203E
Development Board with Xilinx Virtex-II FPGA chip to obtain
digital readouts. A Honeywell FSG15N1A force sensor is used
to measure the applied weight and National Semiconductor
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LM35CZ temperature sensor was used to measure the envi-
ronmental temperature. A mechanical platform was fabricated
to mount different weights on the force sensor. The force
sensor and temperature sensor outputs were amplified and then
applied to a multiplexer (MUX). The MUX output was passed
through a sample-and hold (S/H) circuit and then converted
into digital form by a 12-bit analog to digital converter (ADC).
The digital readout of the applied weight and environmental

temperature were recorded using the RC203E development
board. We used an electric oven to control the surrounding
temperature.

We applied weights to the force sensor’s mechanical plat-
form at an increment of 20 grams to obtain digital readout for
0-500 grams, at five different temperatures, i.e., at 12, 22,40,
60 and800C. To minimize the effect of measurement noise,
the measured data were averaged over several experiments.
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Fig. 10. Performance of ELM-based model. Full-scale percent error between the linearized and estimated responses at specific temperatures (−40, 100, 150

and2000C) for a linear and three forms of nonlinear dependencies: (a)NL0; (b) NL1; (c) NL2; (d) NL3.

The measured digital readout (in mv) against input weights
(in grams) at five different temperatures are shown in Fig. 13
(upper five dotted lines). It can be seen that the response of the
force sensor is nonlinear and dependent on the environmental
temperature.

B. Experimental Results

An MLP with {2 − 5 − 1} architecture was selected for
modeling the force sensor. The MLP was trained with three
datasets (at12, 40 and 800C) for 20, 000 iterations using
learning and momentum factors as0.05 and0.25, respectively.
During training we used only five data points (out of 26
data points) from each data set. The lower curves in Fig. 13
represent the estimated response by the MLP-based model. It
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can be seen that the MLP-based model output is almost linear.

The FS error between the linearized response and the actual
response from the MLP-based model is depicted in Fig. 14.
The FS error is about±1.5%. The relatively higher FS error
is due to the presence of noise in the data used to train the
MLP. However, even with these noisy data, performance of
the MLP-based model is found to be satisfactory and the FS
error remains within±1.5%.

VIII. CONCLUSIONS

Smart sensors should be capable of providing accurate read-
out, calibration and auto-compensation for the nonlinear influ-
ences of the environmental parameters on its characteristics.
To achieve these objectives, we have proposed a novel neural
network-based technique for modeling a capacitive pressure
sensor operating in a harsh environment in which temperature
can have wide range of variation. Using a variable learning
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rate backpropagation algorithm and taking random samples
during training, a highly effective NN-based CPS model was
obtained. We have shown the effectiveness of the proposed
model under different forms of nonlinear influences of the
ambient temperature on the pressure sensor characteristics.

We have considered a linear form and three forms of nonlin-
ear influences of temperature on the sensor characteristicsin a
temperature range varying from−50 to 2000C. The maximum
error of the NN model for estimation of pressure remains
within ±1.0% (FS) for the linear form, while it remains within
±1.5% for the three forms of nonlinear dependencies. The
proposed NN-based models may be applied to other types of
sensors to incorporate intelligence in terms of auto-calibration
and to mitigate the nonlinear dependency of their response
characteristics on the environmental parameters.

We have compared the performance of the MLP-based
CPS model with another highly efficient and powerful NN,
/it i.e. , ELM. Performance of the ELM-based CPS model

is found to be slightly inferior to that of the MLP-based
model. However, ELM is found to be computationally more
efficient and therefore may be used for on-line applications.
The performance of the MLP-based model based on the
measured data obtained through an experimental setup is also
found to be satisfactory. We believe that other NN models,
e.g. , RBF and Bayesian NNs, may also provide satisfactory
performance in similar applications.
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