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Abstract— A novel artificial neural network (NN)-based tech- to applied pressure is small compared to the offset capaeta
nique is proposed for enabling smart sensors to operate in and (i) their response characteristics are highly noaline
harsh environments. The NN-based sensor model automatidgl Another problem associated, in general, with all sensors

linearizes and compensates for the adverse effects arisimiue . that. thei h teristi infl d by th
to nonlinear response characteristics and nonlinear depatency IS that, their response charactensics areé influenced By

of the sensor characteristics on the environmental varials. disturbing environmental parameters, e.g., temperatuve,
To show the potential of the proposed NN-based technique, midity and pollution. For example, in case of a capacitive
we have provided results of a smart capacitive pressure sems pressure sensor (CPS), its response depends not only on the
(CPS) operating under a wide range of temperature variation — gh5jied pressure but also on the environmental temperature
A multilayer perceptron is utilized to transfer the nonlinear Thi bl b iallv when th iti
CPS characteristics at any operating temperature to a lin- IS p“? em ecomes severe, eSPec'a y when the capacitv
earized response characteristics. Through extensive sirrated SENSOr is operated in a harsh environment where temperature
experiments, we have shown that the NN-based CPS model canvariation is large.
provide pressure readout with a maximum full-scale error of Usually, an exact mathematical model of a sensor showing
only +1.5% over a temperature range of —50 to 200°C' with ¢ relationship between the measurand and its responge, an
excellent linearized response for all the three forms of ndimear .
dependencies considered. Performance of the proposed tethue _the deper]dency of Senso'_' output on environmental para;neter
is compared with a recently proposed computationally effi@nt IS not available. Further, since most of the sensors exsiiite
NN-based extreme learning machine (ELM). The proposed MLP- amount of nonlinear response characteristics, and theamvi
based model is tested by using experimentally measured real mental parameters influence the sensor behavior nonlinearl
sensor data, and found to have satisfactory performance. the problem of obtaining an accurate readout and its céikira
Keywords becomes highly complex. Some of the ideal properties of a
Intelligent and smart sensors, artificial neural netwoptes- Sensor include linear response characteristics, auteatan
sure sensor, linearization, auto-compensation, harshioenv for the adverse effects of nonlinear environmental pararset
ment. high sensitivity and accuracy, and low power consumption.
However, in practical situations, it is not easy to achialesai
sensor characteristics, especially when the sensor iatpgr

| INTRODUCTION in a harsh environment.

Sensors are widely used in industrial processes, automoin order to obtain an accurate and precise readout from
biles, robotics, avionics and other systems to monitor amd c a CPS the adverse effects of the environmental parameters
trol the system behavior. Besides, the use of precise, atrurand nonlinear characteristics are required to be suitadufy-c
and low power sensors has recently emerged in many sensensated. In this direction, for compensation of offsetacap
network applications. Capacitive sensors, because afftigh itance, temperature and auto-calibration, switched dgapac
sensitivity and low power consumption, are extensivelyduséased techniques [1], [2], and ROM and over-sampling delta-
in various applications to measure pressure, force, positisigma demodulation techniques [3], [4] have been reported.
speed, acceleration, liquid level, dielectric propertied flow Some of the digital signal processing-based techniqueh, bo
of materials. However, some of the drawbacks of capacititerative and non-iterative, for pressure sensor linedon
sensors are that: (i) the change in capacitance of the sdngorand compensation are found in [5]-[7]. To reduce the com-

putational load, a non-iterative 2-dimensional calilmatand
o Jiéeﬁljr?if/r:ré? Witshir:h: %fgoé’s';;g%(_’“;pmuﬁlr_ igggl?;gﬁa ’;‘agfe‘?:r’t‘oc;f linearization technique [8] and a microcontroller-unitQ\)-
thiqs work was cgr,ried gu{)while he visited Iwate P?efectwalv‘ergs.ity, gapan, based self-calibration technique [9] have been reportea. T
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that Newton’s algorithm is more suitable for offset compmens
tion in shock measurement. A self-calibration and linestion

algorithm for smart sensor applications based on a progeess
polynomial method and an optimal choice of calibration p®in 3
have been suggested in [12]. These techniques providetimit & o,
solutions to the complex problem under the assumptions the§ o \
the range of variations of environmental parameters ardl smaZ ¢---

and the influence of environmental parameters on the sensi;o4- 1
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characteristics is linear. g

Recently, artificial neural networks (NNs) have emerged?o'sf 50 |
as a powerful learning technique to perform complex tasksg 0.2 , 125
in dynamic and nonlinear environments. These networks ar§0 | “v-100
endowed with unique capability of universal approximation® ™ o
and the ability to learn from and to adapt according to their o o1 o3 o3 04 o5 o6
environment. Another important property of the NNs is their Measurand, x (Norm. Pressure)

fault-tolerance capability, which allows graceful degatidn of o
performance when the network is partially damaged. Becayd& 1+ The concept of linearization for a sensor.
of these characteristics numerous successful applicatdn
NNs are found in various fields of science, engineering and ) o
industry [13], including instrumentation and measuremefgsirable to have linear response charactenstlcs_ for gos/en _
[14], [15]. tr.ansduce.r. It .makes the measurement and calibration quite
It is shown that the NN-based approximations for me§1_mple. It implies that the senso.r/ transducer responsebean
surement data perform much better than those of classi@if€n by y = max + ¢, wherey is the transducer response
methods of data interpolation and least mean square régmesé€-9- voltage or current); is the measurement variable (e.g.,
[16]-[18]. Application of NNs with superior performance inPressure)yn is the slope (sensor gain) andis a constant.
compensation for environmental dependency and nonlineér-rué linear characteristics is obtained when = 1 and
ities of sensor characteristics of pressure sensors pug}-[ ¢ = 0 (the bottom straight line in Fig. 1). In the case of
magnetic field measurement [22] and ultrasonic distance m&S€Nnsor, a true linear characteristics is most desirablé, a
surement [23], have been reported. An NN-based technid@é‘kes calibration, validation and faultdetectl(_)n qgm;yamd
to compensate for the nonlinear interference of structamal Consequently a correct readout becomes quite simple.
geometrical parameters in a differential eddy-currerpldise- However, obtaining a true linear characteristics is not an
ment transducer with satisfactory results has been repor@@sy task. It becomes more complex when the disturbing pa-
[24]. An NN-based fault detection scheme for Wheatstorigmeters (e.g., temperature) influence the sensor chestice
bridge transducer [25] and NN-based compensation scheh@linearly. In this direction, a linearization techniqueing a
for disturbing parameters in a strain gauge transducerkigyga Simple multilayer perceptron (MLP) for a temperature senso
a small range of disturbances have been reported [26]. (& negative temperature coefficient resistor) has beerntezpo
In some of the earlier reported works [19]-[21], we hav&7]. Here, a linearization of 0.5% was obtained, but only
shown the effectiveness of NNs in auto-calibration and corfer a small operating range afo’C. Besides, the effect of
pensation for adverse effects of linear and nonlinear inttag  disturbing environmental parameters were not considered.
of disturbing parameters. We have shown that the NN-basedr earlier papers [19]-[21] the emphasis was to employ the
models are quite effective and capable to provide accur&ls to estimate the sensor’s nonlinear response charstateri
readout when the sensor operates in a harsh environm@ggurately (upper curves in Fig. 1). However, in the current
with wide variation of surrounding temperature. Howevar, ipaper the focus is to use the NN to obtain an exact linear
these NN-based techniques, the main emphasis was to fit tégponse characteristics for a sensor (the bottom sokdybtr
nonlinear response characteristics data most accuratetyie line in Fig. 1).
the sensor characteristics changes under the influen@aglin In this paper, we present a novel NN-based technique to
or nonlinear) of the disturbing parameters (e.g., tempeext develop an intelligent pressure sensor that can provide tru
These works were concentrated in finding a neural model ltnear response characteristics. Here, we have shownhbat t
obtain the sensor response accurately under the influencepafposed NN-based CPS sensor model can provide a true
linear or nonlinear disturbing parameters. The importasti¢ linear response characteristics even if the CPS is operated
of linearization was not considered in those papers. in a harsh environment with a wide variation of temperature
Typical response characteristics of a CPS operating ranging from—>50 to 200°C. In addition, we have assumed that
different temperatures is shown by the upper five curves the CPS response characteristics are nonlinearly inflaence
Fig. 1. The middle curve (solid line) represents the sensby the environmental temperature. The proposed MLP model
characteristics at normal temperature25fC. Due to non- achieves the true linear response characteristics (asnshow
linear influence of the disturbing parameter (in this casi Fig. 1) which is independent of the nonlinear sensor
the temperature) the sensor characteristics changea#iisti characteristics and its nonlinear dependency on the emviro
from the normal operating temperature C. It is always mental temperature. Through extensive computer simulstio



we have shown that the maximum full-scale (FS) error remaifisction which is a third order polynomial of normalized
within +£1.5% under wide possible operating conditions, byemperature. The nonlinear dependency functifn®’), : =

using three forms of nonlinear dependencies. 1 and2 may be expressed as:
The rest of the paper is arranged as follows. Section Il
presents a brief theoretical background of the CPS and the fi) =1+ gi(T), (4)

switched capacitor interface. Section 11l provides dstafithe

proposed MLP-based sensor modeling scheme. Brief descMfiiere

tion of a recently proposed NN, the extreme learning maghine gi(T) = ki1 T + ke Ty + Kis T, (5)

is provided in Section IV. Extensive simulated experimemes

detailed in Section V. Section VI provides the performancdd the normalized temperatutEy is given byTn = (T —

evaluation and discussions on the results of the expersne)/(Tmaz — Tmin). The maximum and the minimum operat-

Performance comparison between the MLP- and extrei@ temperatures are denoted By, andT.,;n, respectively.

learning machine-based sensor linearization schemessdgs aihe coefficientss;;, wherei =1 and2, andj = 1,2, and3,

made in this section. The details of an experimental setdgtermine the extent of nonlinear influence of the tempeeatu

to measure data from a force sensor and the performafethe sensor characteristics. Note that whgn= 0 for j = 2

results of the proposed MLP-based model with these data afd 3, the influence of the temperature on the CPS response

provided in Section VII. Finally, conclusions of the preserfharacteristics becomes linear.

study are summarized in Section VIII. The normalized capacitance at any temperaflinrmay be
expressed as:

1. CAPACITIVE PRESSURE SENSOR AND Cn =C(P,T)/Co(Tp). (6)

SWITCHED CAPACITOR INTERFACE . .
A capacitive pressure sensor (CPS) senses the appl-,—(pdS may be expressed using Eqns. (2) and (3) as:

pressure in the form of elastic deflection of its diaphraghe T
capacitance of the CPS resulting from the applied presBure Cn = fi(T) +~f2(T), (7)

at the ambient temperatuf@ is given by [3]:
wherey = Py (1 —7)/(1 — Pn). Because of the requirement

C(P,T) = Co(T) + AC(P, T), (1) of the proposed NN modeling;x in (7) is divided by a scale
factor (SF) of2, so as to limit its value within. The value of

where AC(P,T) is the change in capacitance a@d(T’) is ~ becomes zero when the applied pressure is zero. Therefore,
the offset capacitance.e., the zero-pressure capacitance, ahe normalized zero-pressure capacitamee, the normalized

the ambient temperatur€. The above capacitance may beffset capacitance at any temperatilfeis given by:
expressed in terms of capacitances at the reference tempera

ture, Ty as:

C(P,T) = Co(To) f1(T) + AC(P,Tp) f2(T), (2

Cno = fi(T) =1+ g (7). 8

) ) ) By choosing appropriate values af; and using (2)-(7),
where,Co(To) is the offset capacitance amkiC'(P, 7o) is the  gne can simulate the CPS characteristics that is nonlinearl
change in capacitance, at the reference temperdfyreThe influenced by the ambient temperature.

nonlinear functionsf1(7) and f>(T), determine the effect A gyjitched capacitor interface (SCI) for the CPS is shown

of temperature on the sensor characteristics [3]. This iogle Fig. 2, where the CPS is represented ®yP). The SCI
provides sufficient accuracy in determining the influence %futputprovidesavoltage signal proportional to the capace
temperature on the sensor response characteristics.

; X i change in the CPS due to the applied pressure. The SCI

The capacitance change in _the_CPS due to applied Presfration can be controlled by a reset sighaWhend = 1

at the reference temperatufg is given by [3],[4]: (logic 1), C(P) charges to the reference voltagg while the
1—7 3) capacitorCy is discharged to ground. On the other hand, when

1— Py’ 6 = 1, the total charg€’(P)Vy stored inC(P) is transferred

d © C's producing an output voltage given by:

AC(P,Ty) = Co(To) Pn

where 7 is the sensitivity parametely is the normalize
applied pressure given b¥Yn = P/Paz, and P, is
the maximum permissible applied pressure. The parameters

7 and Pp,q, depend on the geometrical structure and physicghere i — Vr/Cs. It may be noted that if the ambient tem-
dimensions of the CPS. SingeC'(P, Ty) becomes very large peratyre changes, then the SCI output also changes, althoug
as Py approaches, in practice, the value oy is normally he applied pressure remains the same. By choosing proper

kept within0.9. . _ ~ values ofC'g and V%, the normalized SCI outputy may be
In this study, in conformance with practical conditionsypiained in such a way that

we have considered that the ambient temperature nonlnearl

influences the CPS characteristics. In order to study the non Vy = Ch. (10)
linear dependence of ambient temperature, we assumed that

the capacitance change in a CPS is influenced by a nonlinear

Vo =K-C(P), 9)
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Fig. 2. The switched capacitor interface circuit along vaiipacitive pressure Fig. 3. An MLP-based scheme for a capacitive pressure sems@nsfer the
sensor. response characteristics at any temperature to lineaomespcharacteristics.

I1l. THE MLP-BASED CPS MODEL applied to the NN model and its output is computed. If the

NN output and the target pattern match closely, then it may

The proposed MLP-based model uses an MLP for automagg sajd that the NN model has learnt the sensor charaateristi
calibration and compensation for nonlinear temperatupede satisfactorily.

dency of the ambient temperature on the sensor charaierist T4 jllustrate the effectiveness of the model for nonlinear

In addition, it is trained to provide a linear response Cbaradependency of sensor characteristics on temperature, vee ha
teristics. We know that the sensor characteristics of a CRRysen three forms of nonlinear functions denotedN\a¥1,
is nonlinear and varies with the environmental temperatur§ 1o and NL3. A linear function denoted bW L0 is also
Further, the environmental temperature influences theresp sed for comparison purpose. These nonlinear functions are
characteristics in a highly nonlinear manner. The ObjeC“‘generated by different sets of coefficients in (5). In this
here is to obtain a linear characteristics for the sensdrisshastudy’ the temperature information is assumed to be aveilab
independent of its nonlinear characteristics and its meali |t can be obtained by using another temperature sensor.eAs th
dependency on environmental temperature. sensor characteristics do not change drastically with alsma
In order to achieve this objective we utilize an MLP tQariation of temperature, the temperature sensor need ot b
transfer the nonlinear sensor characteristics at any teatype of high accuracy.
(the upper curves in Fig. 1) to a linear normalized sensor|n the first stage, the MLP is trained to learn to transfer the
characteristics (lower straight line in Fig. 1). Thereforen sensor characteristics at any temperature to the norrddlize
the surrounding environmental temperature changes, ujtho earized response characteristics. The scheme for thiisnsh
the nonlinear sensor characteristics change in a comp|g¥-ig. 3. Here, the inputs to the MLP consist of the normalize
manner due to the nonlinear temperature dependency, the RéPnperaturely and the normalized SCI outputy (10).
posed MLP-based CPS model will always provide a linearizgthe normalized SCI output refers to the capacitive pressure
response. transducer output which determines the pressure readout. F
In the proposed MLP-based CPS model, all the signals af&rue linear response characteristics, the SCI outputlghou
suitably scaled by appropriate SFs to keep their range mitthe linearly proportional to the normalized applied pressur
+1.0. The model operates in two phases: the training phasgRerefore, we choose the target outpit,, = mPy. During
and the test phase. In the training phase, the NN is trainedi@ training phase the MLP attempts to produce an output
learn the sensor characteristics and environmental depeyd which is a good estimate of the target output. By changing the
Several known datasets are needed to train the MLP. An ingigfue of the gain parameten we can obtain the linearized
pattern, and its corresponding target (also called theretsi sensor characteristics with a different gain.
pattern constitute one pair of data in the dataset. The totalone dataset for a specific temperature is obtained by
available datasets are segregated into two parts. The érst precording the SCI outputi{y) for different values of applied
called training set, is used for training of the NNs, and theressure at that temperature. Next, at different temperatu
other part called test set, is used to test the model for mns&@lues, covering the full operating range, several dagomet
inputs to verify the effectiveness of the technique. generated. The MLP is trained by taking the patterns from
During the training phase, an input pattern from the trajnirthe training set, and its weights are updated by using the BP
set is applied to the NN and its output is computed. Then thggorithm. After completion of the training, the MLP weight
output is compared with the corresponding target pattene. Tare frozen and stored in an EEPROM.
error generated out of this comparison is used thereafter tdn the present study, we have used an MLP with BP
update the weights of the MLP by using the most populafgorithm for the sensor linearization application, besggithe
backpropagation (BP) algorithm [13]. This training prosesl MLP is robust and a time-proven NN architecture. However,
continues until the error reaches a preset minimum valuet, Nethe major drawback of MLP is its large training time and
the final weights are stored in an EEPROM. These weights alew convergence. Therefore, it may not be suitable for on-
used during testing and actual use of the sensor model. line applications. However, our main purpose in this study
In the second phase, the test phase, the stored final weightso highlight successful application of an NN to the com-
are loaded into the MLP. An input pattern from the test set jex problem of sensor linearization and compensationrdhe



TABLE |
THE VALUES OF k;; FOR THE LINEAR AND NONLINEAR FORMS OF
TEMPERATURE DEPENDENCIES

are several other NN architectures, e.g., radial-basistiom
(RBF) networks, support vector machines (SVM), Bayesian
networks, which may, however, be used for this application.

In the next Section, we briefly describe a computationally [ NZ form | x11 K12 Kis | 21 P Ko3
efficient emerging NN architecture, extreme learning maghi NLO 0.10 0.00 0.00] 0.20 0.00 0.00
(ELM). We used the ELM for the CPS linearization problem NLL 1025 -025 010 020 -0.40 0.40
and compared its performance with the MLP. %ﬁg 8:28 gig 8% 8%2 838 gég
IV. EXTREME LEARNING MACHINE 06

The extreme learning machine is recently proposed by
Huang et al. [28]-[31]. It is a control-parameter-free pouk o688 or"“’j—-:i-':':;
supervised learning architecture and is capable of very fasm gg ~ ; W"’,,N‘V' i
learning. Moreover, it has low computational complexity. T ,ex:v‘v o
Therefore, it may be conveniently used for on-line applica-3 ** s A a1
tions. It is a two layer feedforward fully-connected neuralﬂcg> 06 ,g":j.a- | - ,
network in which the first layer weights and bias values_g agjfijf'_l»—""
are selected randomly and independently from the trainin¢g**f e ‘ 1
dataset. During training phase, the weighted sum of thetinput© 0,56,__,,,,-—";;;5”' ,
pattern is passed through the hidden layer nodes with § ﬁf,:,"
piecewise continuous sigmoid nonlinearity. The outpuetay = 0'54‘;—’7:;9" N0l |
weight matrix and the bias vector are directly obtained by 0-525';'0 :mtz
using pseudo-inverse technique from the output of the mdde o -e-NL3

layer and the desired output. Huang et al. [28]-[31] have %% o 50 100 150 200
. . Temperature in Degree C

shown that the ELM can be an universal approximator. More

detalls. of ELM and mathemat'ca}l treatment on ELM may blglg. 4. Variation of normalized capacitanc€ at Py = 0.3) with tem-

found in [28]-[31]. We have applied ELM for the CPS sensqgerature for the linear and three nonlinear forms of tentpezadependencies

linearization problem. Its performance comparison witk trﬁNLOv 1\th1, Nthﬁ”d NL?f)-fTh’v:jV?'(‘)J% ofCx changes nonlinearly with
. . . . emperature even thou IS TiIXea atl.s.

MLP-based model is carried out in Section VI. P ot

V. SIMULATION STUDIES .
) . ) _ 13 pairs of data Py and V) and correspond to a dataset
We cgrrled out extensive simulation studies for performanglt that temperature. For a temperature range frei’C' to
evaluation of the proposed MLP-based CPS model. In tBg;0 ¢ an increment ofl0°C, twenty-six such datasets,
following, we describe the details of the simulation study. - containingl3 data pairs, were generated. Next, these
datasets were divided into two groups: the training set bhad t
A. Preparation of Datasets test set. The training set, used for training the NNs, comsis
All the parameters of the CPS, such as the ambient teaf-five datasets corresponding-&0, 10, 70, 130 and190°C,
perature, the applied pressure, and the SCI output voltagsd the remaining twenty one datasets were used as thettest se
used in the simulation study were suitably normalized tgpkedO illustrate the nature of the nonlinear forms of tempeetu
their values withird-1.0. Appropriate SFs were chosen for thiglependency, variation of the normalized capacitanc@{at-
purpose. The datasets needed for training and testing of thd) with temperature forN.0, NL1, NL2 and NL3 are
NN were generated as follows. The SCI output voltagjg)( plotted in Fig. 4. Note that even though there is no change
was recorded at the reference temperate= 25°C) with  in applied pressure, the sensor's normalized capacitéhee
different known values of normalized pressuiy) chosen (and as such the SCI outplity) changes nonlinearly with
between0.0 and0.6 at an interval 0f0.05. Thesel3 pairs of temperature. We believe that the above selected values of
data Py versusVy) constitute one dataset at the reference;; (see Table 1) provide adequate nonlinear influence of
temperature. temperature on the CPS characteristics and its compleity i
To study the influence of temperature on the CPS chaimilar to that of practical situations. This is evidentrfro
acteristics, three forms of nonlinear functionsL1, NL2, Fig. 4.
and NL3, and a linear formV L0 were generated, by using The sensor response characteristics at different temesat
(4) and (5). We selected values of thg; arbitrarily and for the four forms of dependencies and the desired linear
tabulated in Table I. Using these values, we observed tleat liesponse are plotted in Fig. 5. It can be seen that the respons
dependency functions introduce a large amount of nonliyearcharacteristics of the sensor change nonlinearly overete t
in the sensor response characteristics. perature range. Besides, the change in response chasticteri
Next, with the knowledge of the dataset at the referend#fers substantially for different forms of nonlinear dejlen-
temperature and the chosen values:gf, the response char-cies. However, it is important to note that, the sensor'sdin
acteristics of the CPS for a specific ambient temperature weesponse characteristics should remain the same in spite of
generated using (7). The response characteristics caufsistifferent nonlinear temperature dependencies and thegelsan
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Fig. 5. The desired linear characteristics and the actualoB@ut (the CPS response characteristics) while the CRfpdsating at different temperatures
(=50, 0, 25, 100 and200°C) under a linear and three forms of nonlinear dependenc®sy (.0; (b) NL1; (c) NL2; (d) NL3.

in ambient temperature. MLP were saved for performance evaluation and actual use of
the model.
B. Training and Testing of MLP The convergence characteristics of the MLP for the differen

) , nonlinear dependencies are shown in Fig. 6. It can be seen tha
A 2-layer MLP with {2 — 5 — 1} architecture was chosenyo mean square error (MSE) reaches at about -50 dB within
in this modeling problem (see Fig. 3). The number of nod§$y)) jterations. However, for better learning, we continued
including the bias units in the input, hidden and the OUtpWaining up to 100,000 iterations.
layers are 3, 6 and 1, respectively. Thus, the MLP containSpeformance evaluation of the MLP-based sensor model was
only 21 weights. Each node of the hidden layer and the outqilt iieq out by loading the final stored weights into the MLP.
layer consists of a bipolar sigmoid nonlinear function. The |, may be noted that, during testing, and actual use of the

inputs to the MLP were the normalized temperatieXand - cpg model, updating of the weights does not take place. After
the normalized SCI output voltag®y). The linear normalized loading the saved weights into the MLP, when the inputs are
voltage Vr.;, was used as the target output for the MLP.  »jiaq to the MLP model, it estimates the pressure readout.

Initially, all the weights of the MLP were set to randomrq estimated pressure and the actual applied pressure were
values within+0.5. During training, the five datasets Wer&ompared to find the effectiveness of the model.
chosen randomly. Also, the individual patterns of each ssew

selected in a random manner. After application of one input V]. RESULTS AND DISCUSSIONS
pattern, the MLP produces an output. The output value was . ) )
compared with the target output to obtain an error values Thi Based on the results of the simulation study, we provide

error was then used to update the weights of the MLP using tig"e the performance evaluation of the MLP-based model for
BP algorithm. The learning parameterand the momentum linearization and auto-compensation for the CPS. In amfuliti

factor 3 (used in the BP algorithm) were selectedoas and W€ have provided the performance results of an ELM-based

0.5, respectively. Completion of weight adaptation for e  CPS model.
data pairs of all the five training sets constitutes one tina
For effective learningl100, 000 iterations were made to trainA. Linear Response Characteristics
the MLP model. To improve learning of the MLP, the learning The MLP-based model was found to be capable of pro-
parameter used in the BP algorithm was varied as: ducing linear response characteristics. The results ruddai

. . through the simulation for the linear and three forms of irenl

a; = ai,1(1 — ’L/Nt), (11) . . . .
ear temperature dependencies are provided in Fig. 7. The re-

wherei is the current iteration number amdl; is the total sponse characteristics at different temperature)(100, 150
number of iterations used. Using a Pentium 4, 2.8 GHmd 200°C) for NLO, NL1 and NL3 are perfectly linear.
machine, it took onlyl6 seconds to train the MLP with However, in the case ofVL2, for lower ranges ofPy,
100, 000 iterations. At the end, the final weight8/() of the there is a slight deviation from linearity. The upper curve
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which represents the sensor characteristics (SCI outptitea  The performance of the CPS linearization using an ELM
reference temperaturdy = 25°C), is shown for the purposeis carried out. In this case, we usé@@d hidden nodes with
of comparison. sigmoid nonlinearity. We have observed that increasing the

It may be noted that, during training phase, the MLP wasumber of hidden nodes does not improve the performance.
not trained with the sensor characteristics for the tentpega The FS percent error and the estimated output obtained from
values in the test set. It may be observed from these figuas ELM-based model are shown in Fig. 10 and Fig. 11,
that the MLP is able to transfer SCI output voltage from theespectively. It is seen that the FS error in the ELM-based
actual to the linearized values quite effectively over aeavidnodel is slightly higher and its linearization is slighttyférior
range of temperature and for the linear as well as the threethat of the MLP-based model. This may be due to the
forms of nonlinear dependencies. Moreover, it is true ewen ffact that the selection of the input-layer random weightrirat
the unseen situations for which it was not trained. might not be a proper one.

The most important benefit of using ELM is its extremely
B. Full Scale Error low computation time. The _ELM-base_d CPS model took only

a fraction of second to train. Thus, it has a great advantage
The full-scale percent error is used as a performance critgrer MLP-based model, as the latter took about 16 seconds to

rion in this study. It is given by: train for 100,000 iterations. For this reason, the ELM-llase
model may be used for on-line applications. In addition to
FS = [Pntru — Pnest] x 100, (12) ELM, other NN architectures, for example, RBF and Bayesian

NNs may be studied. We believe that these NNs will provide

where, the true normalized pressure and estimated noma“éatisfactory performance results at higher computatioost.

pressure are denoted W, and Py.s:, respectively. Here
the_ fulllscale is assgmed to He0. The.FS percent error in VIl. EXPERIMENTAL SETUP AND RESULTS
estimation of normalized response at different tempeestfor )
the NLO, NL1, NL2 and NL3 are plotted in Fig. 8. It may In order to demonstrate the effectiveness of MLP-based
be seen that the FS error remains withi0.5% for a wide model on real sensor data, we collecte_d data_ from a f_orce
range of temperature from50°C to 200°C (at the specified sensor with an experimental setup. In this section we briefly
Py values) for NLO, NL1, and NL3. However, for NL2, describe the setup and show the necessary results.
the FS error varies between0.75% to 1.5%. _

The FS error between the estimated and desired resporfSe§Xperimental Setup
at specific values of temperature are shown in Fig. 9. FromThe experimental setup to obtain sensor output at different
Fig. 8 and Fig. 9 one can see that the maximum FS ertemperatures is shown in Fig. 12. We used a Celoxica RC203E
remains within+0.5% for the NLO and NL1. The FS error Development Board with Xilinx Virtex-1l FPGA chip to obtain
for NL2 remains betweer-0.75 and 1.5%, and for NL3, it digital readouts. A Honeywell FSG15N1A force sensor is used
varies between:0.75%. to measure the applied weight and National Semiconductor
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LM35CZ temperature sensor was used to measure the engimperature were recorded using the RC203E development
ronmental temperature. A mechanical platform was fabetatboard. We used an electric oven to control the surrounding
to mount different weights on the force sensor. The fordemperature.

sensor and temp_erature sensor outputs were amplified amd theWe applied weights to the force sensor's mechanical plat-
applied to a multiplexer (MUX). The MUX output was passeg, -y at an increment of 20 grams to obtain digital readout for
through a sample-and hold (S/H) circuit and then convertgdeqq grams, at five different temperatures, i.e., at 12482,

into digital form by a 12-bit analog to digital converter (R g and80°C. To minimize the effect of measurement noise,
The digital readout of the applied weight and environmenigle measured data were averaged over several experiments.
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The measured digital readout (in mv) against input weighB Experimental Results

(in grams) at five different temperatures are shown in Fig. 13 54 MLP with {2 — 5 — 1} architecture was selected for
(upper five dotted lines). It can be seen that the respons®of £, eling the force sensor. The MLP was trained with three
force sensor is nonlinear and dependent on the environmelatgtasets (atl2,40 and 80°C) for 20,000 iterations using
temperature. learning and momentum factors @95 and0.25, respectively.
During training we used only five data points (out of 26
data points) from each data set. The lower curves in Fig. 13
represent the estimated response by the MLP-based model. It
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Fig. 12. Schematic of the experimental setup.

can be seen that the MLP-based model output is almost linear. VIIl. CONCLUSIONS

The FS error between the linearized response and the actugmart sensors should be capable of providing accurate read-
response from the MLP-based model is depicted in Fig. 1dut, calibration and auto-compensation for the nonlinefn-
The FS error is about-1.5%. The relatively higher FS error ences of the environmental parameters on its charactsristi
is due to the presence of noise in the data used to train ffeeachieve these objectives, we have proposed a novel neural
MLP. However, even with these noisy data, performance n&twork-based technique for modeling a capacitive pressur
the MLP-based model is found to be satisfactory and the B8nsor operating in a harsh environment in which tempegatur
error remains withint=1.5%. can have wide range of variation. Using a variable learning
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] is found to be slightly inferior to that of the MLP-based
= 5ok o] model. However, ELM is found to be computationally more
£ e,gjg;,'é“}j efficient and therefore may be used for on-line applications

2.8 me g
Sl o O e The performance of the MLP-based model based on the
Lo e LB e . . .
§ Pt Sttt measured data obtained through an experimental setupois als
= d’;g‘;ﬁﬂ , found to be satisfactory. We believe that other NN models,
g d,g;“;;—;griaxa’ “o-M12 e.g. , RBF and Bayesian NNs, may also provide satisfactory
& 30 o STy VA performance in similar applications.
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