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Genetic Algorithm to Solve Optimum TDMA
Transmission Schedule in Broadcast Packet Radio
Networks

Goutam Chakraborty

Abstract— The problem of finding optimum conflict free
transmission schedule for a broadcast packet radio network
(PRNET) is NP-complete. In addition to a host of heuris-
tic algorithms, recently neural network and simulated an-
nealing approaches, to solve this problem, were reported.
‘We showed that standard genetic algorithm, though able to
solve small problems, performed poorly for large networks.
This is because, classical crossover and mutation operations
create invalid members, which flood the whole population,
hindering the progress of the search for valid solutions. In
this work, special cross-over and mutation operations are
defined, such that the members of the population always
remin valid solutions of the problem. Excellent results were
obtained in a few generations, even for very large networks
with 400 nodes. The results were compared with recently re-
ported neural network and mean field annealing approaches.

I. INTRODUCTION

Packet Radio networks (PRNET) are widely used for
wireless communication over a wide geographical area,
where direct radio or cable connection is impractical. A
host of papers, published during 84 to ’87, contain nice
survey about this problem and its variations [1], [2], [3],
[4], [35], [6], [7].

The available radio frequency band can be allocated to
the different nodes in the network in different ways: fre-
quency division [6], [8], time division [9], code division,
and spatial reuse. When a single radio channel is used,
the communication can be facilitated either by broadcast-
ing, or by activating a subset of network links in proper
sequence [10], [11], [12]. When nodes transmit packets in
broadcast mode using omnidirectional antennas, network
management is simple if all nodes are tuned to the same
channel frequency, and use time division and spatial reuse
[13], [14], [15]. Spatial reuse means that the same channel
is used simultaneously at different non-interfering parts of
the network. Sometimes directional antenna or low trans-
mission power is used to facilitate spatial reuse of chan-
nel [16], [17]. Since all nodes can not directly communi-
cate, nodes act as store-and-forward repeaters facilitating
multi-hop connection. The packet radio network (PRNET)
model we assume here uses time division multiplex with
spatial reuse.

A packet radio network can be modeled by an undirected
graph, where the nodes represent the transreceiver stations.
A link between two nodes is present when they can trans-
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mit and receive packets directly. An example of five nodes
network is shown in Fig. 1(a). Here, node-1 can communi-
cate directly with node-2 and node-3, but not with node-4
or node-5. Node-1 can transmit a packet to node-5 say,
using node-3 and node-4 as intermediate repeaters.

In the PR network, each station can transmit or re-
ceive, which is controlled by its control unit. When a node
transmits, all its neighbors connected by direct link in the
graph, can receive. The neighboring node/s could absorb
the packet, if it is so designated. Else, it may store to
transmit it later, in which case it acts as an intermediate
repeater.

We consider a fixed topology PRNET, where a single
wide band Radio channel is used by all nodes. A time di-
vision multiple access (TDMA) protocol is used [5]. The
transmissions of packets are controlled by a single clock.
The time is divided into distinct frames consisting of a
fixed number of time-slots. A time-slot equals to the total
transmission time required for a single packet to be trans-
mitted and received by a pair of neighboring nodes. Many
nodes may transmit simultaneously at the same time-slot
without conflict, if they are far apart, i.e., there is no inter-
ference. In one TDMA frame, all the nodes must be able to
transmit at least once. This is termed as no-transmission
constraint.

The basic optimization objective is to get the smallest
length TDMA frame, where many nodes are allowed to
transmit simultaneously in a single time-slot in a conflict
free manner. The secondary objective is to maximize the
number of such transmissions for maximum utilization of
the channel.

In addition to no-transmission constraint, there are other
constraints, namely the primary conflict and the secondary
conflict. Primary conflict says that a particular node can
not transmit and receive in the same time-slot. In other
words, two connected nodes can not transmit simultane-
ously. A secondary conflict occurs when two or more pack-
ets arrive at a node in a single time-slot. This will occur
when two nodes at a distance of two hops are allowed to
transmit simultaneously. Then, the intermediate node will
receive two different packets from two directly connected
nodes, at the same time slot. The transmission schedule in
the TDMA cycle should avoid such primary and secondary
conflicts.

Once the optimum transmission pattern for the TDMA
frame is decided, the same frame is repeated over time.
Thus, though the transmission is broadcast in nature, it is
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centrally scheduled and collision free. We do not need any
overhead like contention technique, as in ALOHA [18].

Fig. 1(d) is a valid TDMA frame for the 5-node network
in Fig. 1(a). It satisfies no-transmission constraint, and
primary and secondary conflicts. But it is not optimal. A
solution with shorter frame length is shown in Fig. 1(e).

TDMA scheduling problem is proved to be NP-complete
[19]. Several heuristics and other algorithms were proposed
during last two decades. A trivial TDMA solution, which
satisfies all the constraints but not optimized, is of frame
length equal to the number of nodes. There, a single trans-
mission for each of the, say N, nodes is allotted at N dif-
ferent time-slots. A formal introduction of this scheduling
problem and the terms used in the paper are explained
in section II. In section IV, we described how, starting
from trivial solutions, optimal TDMA frames can be ob-
tained using standard genetic algorithm. Before that, in
section III, we give a brief introduction to genetic algo-
rithm [20], [21], [22]. The results obtained by standard
genetic algorithm were good for small networks only, when
the number of nodes were 40 or less [23]. But it failed for
larger nets. We proposed special crossover operator, suit-
able for this problem, which is explained in section V. This
proposed modified genetic algorithm could deliver excel-
lent results even for large nets. The details of simulation
and results, discussions about setting of parameter values
for genetic operators are in section VI. In section VII, we
further proposed a randomized algorithm to generate solu-
tions which are not trivial, but already optimized in frame
length. In this case the genetic algorithm could improve the
channel utilization index by a factor of 15 to 50%. Thus,
the combination of the randomized algorithm with the pro-
posed genetic algorithm delivers the best results. Compar-
ison with works using neural network [24] and simulated
annealing [25], are in section VIL.C. Section VIII is the
conclusion.

II. THE PROBLEM

PR network can be represented by a graph G = (V, E),
where V' = {vy,vs,..v5,..ux5} is the set of nodes and
E = {e1,e2,..e1} is the set of undirected edges. The exis-
tence of an edge between two nodes means that both can
directly receive packets transmitted from the other. The
neighboring information, i.e., the connectivity among net-
work nodes, are described by a N x N symmetric connec-
tivity matrix C, where the element

L,
Cij:{ 0

The connectivity matrix for the 5-node network in
Fig. 1(a) is shown in Fig. 1(b). When two nodes are di-
rectly connected, we say that they are one hop apart. The
problem is to schedule constraints satisfied TDMA frame.
The transmissions will follow the same TDMA frame re-
peated over time. We denote a TDMA frame by a M x N
matrix T, where its element

if v; and v; are connected
otherwise

. = 1, if v; transmits in time-slot m
™ 71 0, otherwise

(@) 5-nodePRNET

01100 01110
10100 10110
c=111010| p=||11011
00101 11101
00010 00110
('b) Connectivity matrix ( C) Compatibility matrix

12345 12345 12345

= losauiL

(i) (i)
('e) Optima TDMA

(d) Trivia TDMA

Fig. 1. Example of a (a) 5-node network, corresponding (b) C matrix
and (c) D matrix, with (d) trivial TDMA schedule and (e) optimal
TDMA schedule

When node v; transmits a packet, none of its neighbors,
i.e., nodes which are one hop away, are allowed to transmit
simultaneously, as this would give rise to primary conflict.
All nodes two hops away from v; should also be disabled
to transmit simultaneously with v;, as this would result
in secondary conflict of multiple reception at intermediate
nodes. All these nodes which are one hop and two hops
away from v; form, what is called the broadcasting zone
[19] of v;. The set of these nodes we denote by B;. It is
clear that non-interference requires that none of the nodes
in B; should be allowed to transmit simultaneously with v;.
From this concept we can generate a N x N compatibility
matrix D, where its element

g {1 ifueB
71 0, otherwise

The D matrix for 5-node PRNET is shown in Fig. 1(c).
It should be noted that even after removal of primary and
secondary conflicts, a node may experience interference.
But to obtain any meaningful algorithm, one has to assume
the absence of such interference.

The problem is to find shortest TDMA cycle, such that
the following constraints are satisfied.

o Every stations should be scheduled to transmit at least
once i.e. no-transmission constraint is satisfied.

M

d tmi>1 Vi 1)

m=1

o A station can not transmit and receive packets in the
same time-slot to avoid primary conflicts.

o A station can not receive two or more transmissions si-
multaneously i.e., secondary conflicts are to be avoided.
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Formally,

N
’Lf tmz' = ]., then Ztm]‘d,’j =0 Vm,i

Jj=1

ie.,
M N N

Z Z Z tmitmjdij =0 (2)

m=1 i=1 j=1

The last two conflicts are avoided if the TDMA frame T is
scheduled satisfying Eq. (2). A trivial solution satisfying
all the three constraints is a N-slot TDMA frame, where
N different stations transmit in N different time-slots, as
shown in Fig. 1(d).

The primary optimization criteria is to minimize the
length of TDMA cycle, which means M should be as small
as possible. A secondary optimization objective is to max-
imize the total number of transmissions. By allowing more
nodes to transmit in a time-slot without interference, the
channel utilization of the network is increased. In case
of CSMA (carrier sense multiple access) with nodes trans-
mitting packets of arbitrary length, there are collisions be-
tween packets due to hidden terminal problem [6]. In such
a broadcast multihop PRNET, evaluation of throughput is
difficult [26]. In the case of centralized TDMA schedule,
as considered here, all transmissions are successful. One
optimization criterion of the schedule is channel utilization
index p, where

1 M N
m=1 j=1
is to be maximized. In section VI and VII, we will show
how p is improved by genetic algorithm.
It is trivial that if the maximum degree of a node in the
net is G, the tight lower bound for M would be

M>(G+1) (4)

As the problem is NP-complete, and there is no algo-
rithm to find the optimum solution, we will use this tight
lower bound (G + 1) as an empirical measure to judge the
quality of solution. When M = G + 1, we know that the
solution is optimal.

For the 5-node PRNET, the trivial schedule is shown in
Fig. 1(d), satisfies all the constraints but does not optimize
any of the optimization criteria. For this network G = 3.
In Fig. 1(e)(i) the length of the TDMA frame is minimized
to G + 1. In Fig. 1(e)(ii), p is maximized too.

A. Previous works

When the optimization criterion is only minimizing the
length of the TDMA frame, and only primary conflicts
are considered, the scheduling problem translates to sim-
ple graph-coloring problem. To include secondary conflicts,
one need to consider the compatibility matrix D as the con-
nectivity matrix, instead of C, in the graph coloring prob-
lem. As the graph coloring problem is NP-complete, so is

this TDMA scheduling. Formal proof of NP-completeness
is available in [19], [25].

During the last two decades, several algorithms were pro-
posed to solve this problem. Instead of broadcast schedul-
ing, some considered a similar problem of optimal sched-
ule of activating different links [10], [12]. For broadcast
scheduling, the different algorithms could be classified de-
pending on their objectives and approaches. Most of the
earlier works were either centralized [9], [14], [27], [28], or
distributed heuristic algorithms [19], [29]. Their optimiza-
tion objective was to maximize transmission [19]. Those al-
gorithms started with the trivial initial schedule, as shown
in Fig. 1(d), and added transmissions to it to the maxi-
mum possibility without violating constraints. The length
of the TDMA frame remained same, equal to the number
of nodes, and therefore quite long for networks with many
nodes.

In recent years, random algorithms using neural network
[12], [24], [30], [31], and simulated annealing [25] were pro-
posed. In those works, the main optimization objective was
to minimize the length of the TDMA frame. These algo-
rithms too can not reduce M from the initial setting. As
there is no clue of what would be the optimum length, they
usually started with M = G + 1, the tight lower bound in
Eq. 4. When no solution could be found, M is increased
in steps of 1. Every time the algorithm has to run from
the beginning trying to find a valid solution. Depending
on the problem complexity, many trials may be necessary.
As simulated annealing and artificial neural network, im-
plemented in conventional computers, are computationally
heavy, these approaches could be quite slow.

III. INTRODUCTION TO GENETIC ALGORITHM

Genetic Algorithm (GA) is a search algorithm based on
the mechanics of natural selection [32]. Compared to other
approaches, they are superior, because of wide applicabil-
ity. They make few assumptions from the problem domain,
and are not biased towards local minimums. At the same
time, GAs are very efficient to direct the search towards
relatively prospective regions of the search space.

The first step in GA is to encode the solution of the
problem in binary bit string. The solution in its original
form is referred to as phenotype, whereas its binary en-
coded version is called genotype or simply chromosome. It
is best to have a one-to-one mapping between the solution
of the problem and the chromosome representation. As
the TDMA schedule itself is in Os and 1s, phenotype and
genotype are same.

Next a pool of solutions of the problem, called initial
population, is created. In general, these solutions are gen-
erated simply randomly, without any consideration to how
good they are. A fitness function has to be defined to
measure the goodness of these encoded solutions. Genetic
operators selection, crossover, and mutation operate on the
population to generate new population, i.e., new set of so-
lutions, from the old ones. Good solutions are selected with
greater probability to the next generation, in line with the
idea of survival of the fittest. Standard Crossover opera-
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tion recombines arbitrarily selected solutions pairwise, by
interchanging portions of them, producing divergent solu-
tions to explore the search space. An occasional mutation
operation is performed on a chromosome by flipping a bit
at random position of the encoded chromosome, to facili-
tate jumping of solutions to new unexplored regions of the
search space. As the algorithm continues and newer gener-
ations evolve, the quality of solutions improve. The success
of genetic algorithm is explained by schema theorem and
building block hypothesis in [21].

Many strategies for fitness calculation, selection,
crossover and mutation are proposed. The basic steps for
the Standard Genetic Algorithm (SGA) are shown below.
First the notations are explained.

g : generation number.

G : maximum generation.

P : population size.

®(g) : set of chromosomes at generation g.
®"(g) : set of chromosomes after selection.
®'(g) : set of chromosomes after crossover.

Algorithm SGA (g,G,®(g),P)

01 begin

02 g=0:

03  Create P members of the initial population ®(0);
04  Calculate fitnesses of the members of ®(0);

05 while(g < @)

06 g:=g+1;

07 B(g) EET B(g-1);
08 d'(g) TEZT @(g);
09 B(g) "EET ¥(g);
10 endwhile

11 end

Fig. 2. Algorithm for Standard Genetic Algorithm

The success of genetic search depends on balancing the
two aspects of (1) population diversity for exploring the
different regions of the search space, and (2) selection pres-
sure to get to the optimum point fast. If the best few
members of the initial population predominate the whole
population in a few early generations, due to their much
better fitnesses and high selection pressure, it would result
in poor exploration and premature convergence to subop-
timal solution. On the other hand, at later stage of the
search, when high performance regions are identified, dis-
ruption of good chromosomes after crossover with bad ones
would slow down the process of reaching the global opti-
mum. A number of strategies were proposed [22](chapter 4
& 6), [33], [34], [35] to overcome this problem by setting
a balance between diversity of solutions in the beginning
and selection pressure to concentrate on the best few dur-
ing later generations.

For constrained optimization problems, all encoded
strings may not satisfy the different constraints. There
are two possible approaches to overcome this problem:

1. Use the standard genetic algorithm and allow all en-
coded solutions, both valid and invalid. Invalid solutions

are penalized so that they may not survive (get selected)
to the next generations. Valid solutions are assigned fit-
nesses according to how good they are, with respect to the
optimization criteria.

2. The chromosome representation, the crossover, and the
mutation operations are defined such that invalid solutions
are always avoided. This usually involves some extra com-
putation during crossover and mutation. Higher fitnesses
are assigned to chromosomes representing better solutions.

The above approach (1) is easier to implement and softer,
which means problem independent. But, in practice they
can produce optimum or near optimum results only for
small problems. When the size of the problem and/or the
accuracy of the solutions are increased, due to explosive
increase in the size of the search space mostly crowded by
invalid solutions, finding optimum or near optimum valid
solution is almost impossible. The other problem is, how
to decide to what extent the invalid solutions are to be
penalized. Between two invalid solutions, to what extent
they are violating the constraint is difficult to judge? The
fitness calculation then heavily affects the efficiency of the
algorithm, and the quality of the solution.

Approach (2) is harder, i.e., problem specific, and diffi-
cult to implement. One has to define the solution represen-
tation and/or genetic operators, so that the chromosomes
always represent valid solutions. The algorithm also gets
strongly associated with the particular problem. As the
valid and invalid regions are interlaced, it is difficult to
define genetic operations that make the offsprings always
valid. Correcting invalid chromosomes to their nearby valid
ones is computationally costly. Yet, because the search
space is now restricted to valid solutions only, the algo-
rithm is more efficient, and the quality of solutions much
better.

In the following sections, we will show how two different
approaches were implemented to solve TDMA scheduling
problem, and their respective performances.

IV. STANDARD GENETIC ALGORITHM APPROACH

We first experimented with standard Genetic algorithm
to solve the TDMA scheduling problem. It worked suc-
cessfully for small networks, but failed when the network
size is increased. In this section, we describe the standard
GA approach. Corresponding experimental results are in
section VI.B.

A. Coding the problem and the initial population

TDMA cycle is in binary. Therefore, TDMA frame itself
could be the chromosome and no coding is necessary. For
a N-node PR network, a chromosome could be a N x N
binary matrix. A random initialization of the chromosome
by 0s and 1s will not be a valid solution of the problem. A
trivial valid solution is a TDMA cycle with N time-slots,
where transmissions for different nodes are allocated in dif-
ferent time-slots. Then there will be no interference. This
solution is far from optimal though. A number of such
trivial solutions could be generated by randomly selecting
different time slots for different nodes. This is done by
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different random permutation of 1 to N. In our implemen-
tation, population size P remains same throughout all the
generations.

B. Fitness evaluation and selection

While selecting member solutions to be carried to the
next generation, we need to find proper evaluation function
to judge the fitness values of different competing solutions.
For a wvalid solution, its quality is judged by the length
of the TDMA cycle, i.e. M, and the channel utilization
index p. After crossover operation, it is possible that the
offsprings created would violate the constraints and form
invalid solutions. It is difficult to properly evaluate invalid
individuals. We penalize such infeasible solutions by using
a penalty function, Pen(T), where T denotes the invalid
chromosome. With a heuristic penalty function Pen(T),
we can not actually evaluate the degree of invalidity. We
can only apply subjective judgement to decide which one is
better between the two, and rank them according to their
goodness. We rank all the chromosomes in the population
by comparing every pairs using the following algorithm.

Step 1: First we check if the two chromosomes are valid
solutions or not.

Step 2: If both are valid solutions:
The chromosome with lesser number of time-slots (M) will
have lower rank. For two chromosomes with equal number
of time-slots, the one with higher channel utilization index
(p) will have lower rank.

Step 3: If only one is a valid solution:
The valid solution will have lower rank.

Step 4: If both are invalid solutions:
Calculate a quadratic penalty function Pen(T) for the
chromosomes as follows.

Pen(T) = (P1 x (ntr +cf/(P2 x N)))? (5)

where,

ntr = the number of nodes failed to transmit

c¢f = number of primary and secondary conflicts

N = number of network nodes

P1, P2 = parameters to tune Pen(T)

Lower Pen(T) value means lower rank.

All the chromosomes are serially arranged according to
their ranks. The best solution is assigned rank 1, and the
worst ranked P, the population size.

We use tournament selection [20](Chapter 24) for select-
ing chromosomes to the next generation. Here, some prede-
fined number, say 7 the tournament size, of chromosomes
are randomly chosen from the whole population. The best
among them goes to the next generation. This process
is repeated P number of times to select P members of the
next generation. Tournament selection is very efficient with
time complexity O(P). Selection pressure is low when 7 is
small, and increases with 7. And therefore, it is very easy
to control selection pressure by changing tournament size.

C. Crossover and Mutation

As time-slots are the time units of transmission,
crossover operations are implemented on the rows of a

TDMA frame, not on the whole TDMA cycle. The total
number of time-slots in the whole population is P x N ini-
tially. We select rows from different chromosomes (TDMA
frames) using predetermined crossover probability, and
gather them in the mating pool. For crossover between
two strings selected randomly from the pool, a cut position
is determined randomly and the classical crossover opera-
tion is done by swapping parts of the chromosome from the
cut point. If, in a valid offspring, all entries for a row be-
comes 0, that row is erased from that chromosome. During
crossover, violation of constraints are not examined. If an
individual becomes an invalid solution, its fitness is penal-
ized as discussed in the section IV.B.

Simple mutation is used where bit positions are selected
for mutation with mutation probability. The binary bit at
the selected position is flipped.

Simulation results, reported in section VI.B, show that
the standard GA failed to solve complex problem with large
number of nodes. In the next section V, we propose spe-
cial crossover operation suitable for this problem, so that
members of the population are always valid.

V. MODIFIED GENETIC ALGORITHM

We defined a new crossover operator for this problem,
so that invalid solutions are not created. In section IV,
constraints of the problem were used only to penalize the
offsprings, when they were invalid. The new crossover op-
erator is defined using knowledge of constraints of the prob-
lem. Obviously, the crossover operation is more involved,
but the fitness calculation is easy and more meaningful as
all the offsprings are always valid.

A. Coding the problem and the initial population

Coding of the TDMA schedule and creation of the ini-
tial population is done the same way as described in sec-
tion IV.A. When we use trivial TDMA cycles of length N
as members of the initial population, the proposed genetic
algorithm could reduce the cycle length to a great extent,
but could not reach the optimum length for large problems.
A very high value of channel utilization index is achieved
though. Simulation results are reported in section VI.C.

In another set of experiments, we used initial popula-
tion generated by a randomized algorithm described in sec-
tion VIL.A. Though, those schedules are already short in
cycle length, the p values are low, as there is only one trans-
mission per node in the whole TDMA frame. On a popula-
tion generated by the randomized algorithm, the proposed
GA is executed to improve transmission efficiency. Corre-
sponding simulation results are reported in section VII.B
and VII.C.

B. Fitness evaluation and selection

In this case, the member solutions are always valid. The
comparison of fitness among solutions is therefore easier.
For any chromosome T?, the TDMA frame length M? and
channel utilization index p' are used to evaluate it. The
chromosome with shorter M? is a better solution and will
have lower rank. For two chromosomes with equal number
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Fig. 3. An example of crossover operation, for a 10-node network

of time-slots, the one with larger value of p?, i.e., with more
transmissions, will have lower rank.

Here too we use tournament selection. Constant tourna-
ment size is used throughout all the generations.

C. Crossover and Mutation

Crossover is done on rows of TDMA cycle. Rows from
members of the population, i.e., different TDMA frames,
are selected using the predetermined crossover probability,
and are marked to be members of the mating pool. A pair
of rows are randomly selected from the pool for crossover.
Let’s name these two parents as PR1 and PR2. The objec-
tive of the crossover is to create an off-spring with a better
schedule for a time-slot with more transmissions, by com-
bining the parent schedules. By crossover operation only
one child is created, which may or may not replace the par-
ent /s, depending on how good it is. Maximum transmission
schedule, combining the parents PR1 and PR2, is possi-
ble when PR1 and PR2 are logically ORed to create the
off-spring. But, this child may violate conflicts described
by matrix D. The following algorithm creates a valid child
(CH), which is a maximal of the transmissions from the
two parents, and does not violate constraints.
step 1 First PRI is logically ANDed with PR2 and writ-
tenon CH,i.e., CH < PR1APR2, where A denotes logical
AND operation. It is trivial that CH does not violate any
constraint, as PR1 and PR2 do not.

Step 2 PRI is logically exclusive-ored with PR2. This
PR1 ® PR2 string is used for possible addition of 1s to
CH string.

Step 3 The PR1® P R2 string is scanned from left to right.
The first 1 encountered is copied to the same position of
CH string replacing 0. This is the new CH, shown as
CH1 in Fig. 3. This addition of 1 would not violate any
constraints, as CH would still be a subset of either PR1
or PR2, both of which are valid.

Step 4 We go further right on the PR1 & PR2 string till
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we encounter the next 1, say at it* bit position. This 1
is temporarily copied to C'H string, and logically ANDed
with the it* row of D matrix. If the resulting string after
AND operation is all Os, it is easy to see that there will be
no primary or secondary conflict by replacing 0 with 1 at
this i** position of the CH string. This 1 then replaces 0
in CH, which becomes the current CH (shown as CH2 in
Fig. 3). If the ANDing results in a non-zero string, this 1
at i*" position would violate primary or secondary conflict,
and the 0 is kept unchanged. This is what happened at the
rightmost bit in Fig. 3, when CH3 A D10 has a 1 in bit
position 3. The procedure is repeated, till the end of the
PR1 @ PR2 string is reached, when we get the final CH.
Step 5 In strings PR1, PR2 and C'H, a 1 denotes trans-
mission allowed for a particular station. Thus, correspond-
ing to a string, say PR1, a set of stations are scheduled to
transmit. We denote it by {PR1}. After step 4 is com-
pleted, there are three possible outcomes.

(1) {CH} D {PR1} and {CH} D {PR2}.

In this case, as C'H is a better schedule compared to both
the parents, it replaces PR1 and PR2 in their original
TDMA frames.

(2) {CH} is superset of either { PR1} or { PR2}, not both.
In that case CH replaces only that parent which is its
proper subset. The other parent remains unchanged.

(3) Neither of the above two cases are true. Do nothing.
Step 6 When a parent PR is replaced by the offspring
CH, all rows of that TDMA frame, which are subsets of
{CH} are erased.

Simple mutation is done by flipping a bit. At every bit
of all the members of the population, a random number
between 0 to 1 is generated. If it is less than or equal to
mutation probability, it is flipped, only when it does not
violate conflicts. If the mutation creates an invalid frame,
it is discarded.

Theorem: In the proposed GA, all chromosomes in every
generations will satisfy all the constraints.

Proof: It is trivial that the TDMA frames, after
crossover, will not violate no-transmission constraint, as
the set of transmission of a child is always a superset of
that of the parent it replaces. Further, a crossover and
mutation operation are ensured not to create any chromo-
some that would violate primary or secondary conflict con-
straints. We have started with an initial population with
all the members satisfying all the constraints. Therefore,
the solutions after each generations will also satisfy them.

VI. SIMULATION AND RESULTS

The performance of the standard as well as the modified
genetic algorithm were experimented for a large number
of times, using connected networks of different sizes and
degrees of connectivities. In section VI.B, we give results
of experiments using standard GA. The results show that
when the network size is over 40-nodes, the results are very
poor. In section VI.C, we describe the results of experi-
ments done with the modified crossover. Here, the simu-
lations were done on large connected planar networks de-
scribed in section VI.A. In section VI.B and VI.C, we used
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randomly generated trivial TDMA frames, with M = N,
as the initial population. We also did extensive experi-
ments on how the efficiency and the quality of the results
depend on the population size, tournament size, crossover,
and mutation probabilities.

A. Problem Set up

As there is no standard benchmark problem set, we will
perform simulations on networks similar to what were used
in recently reported publications [19], [24], [25], and [29].
In practice, for PRNET, the degree of connectivity of nodes
are usually low. Here, we will set up networks which are
described by planar graphs. Only neighboring nodes are
directly connected. Nodes in large networks are placed in
the form of matrices, as was done in [24], [25].

To create large problems, a matrix of dots in X-Y plane.
are arranged. Now, a node is randomly connected to a
subset of its neighboring eight nodes (for nodes on the
boundary it is less than 8). It is ensured that finally it
is a connected network, so that any node can communicate
with any other node, if sufficient number of hops are used.
The average degree of connection is set to different values.
Two such 100 nodes networks, with average degree of con-
nections 4 and 6, are shown on the left side of Fig. 10 and
Fig. 11 respectively.

B. Results with Traditional Genetic Algorithm

We created networks of randomly connected nodes with
average node degree of 3. Networks with number of nodes
10, 20, 30, 40, 50, and 60 were used for the experiments.
The probability of connection between two nodes was de-
creased exponentially with the distance between them.
Each experiment was run 50 times and the average value
of the results are shown in Table. I. Each time up to 1000
generations were executed, sufficient for the results to be
stabilized. Different values of the parameters e.g., prob-
ability of crossover, mutation, and tournament size were
tried. They were set at values, where the results were best.

The results in Table. I shows that the standard GA works
somewhat well only for small networks of size up to 40,
till when, though the length of the TDMA frame is not
optimized, the channel utilization index reaches quite high
value. Beyond that size, the results are little better than
the trivial solution. That means, the initial population
improved little through generations.

The most important reason for this failure is that, by al-
lowing infeasible solutions the search space explodes. Most
of the members in the population are then invalid. The
search for good valid solution fails, even after penalizing
the invalid ones. Moreover, it is impossible to define a sin-
gle penalizing function, which could penalize all the invalid
solutions according to their degrees of invalidity. Also, by
uniform ranking we lose the information about the relative
goodness (or badness) of different solutions, and the selec-
tion pressure becomes weak. Thus, it is important to keep
all the member solutions valid throughout generations and
define crossover and mutation accordingly. Experiments in

N 10 20 30 40 50 60
G+1 |6 5 6 6 7 7

M 6.0 9.6 21.1 28.0 49.2 59.9

p 0.183 0.208 | 0.208 | 0.169 | 0.023 | 0.017

Avg node degree =3  Tournament size = 4
M: avg number of time-slots
Population Size = 100

Probability of crossover = 0.3

G = max. degree
p = Avg channel utilization index
Maximum Generation = 1000
Prob. of mutation = 0.001

TABLE I
RESULTS OBTAINED USING STANDARD GA

sections VI.C are with proposed crossover, where all mem-
ber solutions generated are valid.

C. Results with new genetic operators on trivial initial pop-
ulation

Here we used large planar graphs as described in sec-
tion VI.A. Smaller nets were same as used in [19], [24],
[25], and [29].

In Table. IT the results of these experiments are sum-
marized. For all the problems, GA were run for 20 times,
each time up to a maximum of 300 generations. Though
not exactly same, the results are quite similar for 20 differ-
ent runs. Short TDMA frames could be reached in a few
generations. For large networks, frame lengths are longer
than optimum lengths. This is because, even at early gen-
erations, lots of transmissions were added in the TDMA
frame, and then it is difficult to reduce the frame length
further, avoiding primary and secondary conflicts. On the
other hand, very high channel utilization index is achieved
for all the problems tried. Though the TDMA frame length
reaches its stable value in a few generations, the number of
transmissions and therefore the channel utilization index
continue to improve for many more generations, especially
for big problems with 100 or more nodes. To give a rough
idea, the computation time for a run of 100 generations
is noted in the last column of Table. II. The simulations
were done in a DEC VT-alpha 600SNL machine (600Mhz.
CPU with 512 Mbyte main memory). As the codes were
not optimized, and included lots of reporting commands,
the actual execution time for the GA would be much less.
For larger networks, due to very limited size of the core
memory, swapping caused long execution times.

In Fig. 4, we show typical examples of how the TDMA
frame length and channel utilization index improves over
generations. The results are for problems #4 and #5.

By changing the fitness function, assigning more priority
to reduce the TDMA frame length, or restricting only sin-
gle transmission per node, it is possible to achieve solutions
with shorter frames. Instead, we used a randomized algo-
rithm to obtain short length TDMA solutions, as the initial
population. The algorithm is described in section VIL.A,
and results are reported in section VII.B and VII.C.

C.1 Effect of algorithm parameters

We studied how the efficiency of the algorithm and the
quality of the results are affected by the choice of the ge-
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Prob. Problem specifications TDMA frame | transmissions | corresponding | Computation
no. | No. of | No. of | av. Degree, length in in no. of channel uti. time for 100
nodes links | and G + 1 no. of gen. generations index p generations

1 14 23 33, 6 6in 5 17 in 26 0.202 0.71 Sec.

2 16 22 2.75, 5 51in 6 17 in 14 0.212 0.85 Sec.

3 40 66 3.3, 8 9in 13 72 in 47 0.200 5.6 Sec.

4 100 200 4.0, 9 16 in 46 248 in 80 0.155 5.5 mins.

5 100 250 5.0, 9 17 in 50 223 in 90 0.131 5.6 mins.

6 100 300 6.0, 9 18 in 60 206 in 83 0.114 5.8 mins.

7 200 400 4.0, 9 29 in 85 973 in 162 0.168 48 mins.}

8 300 600 4.0, 9 39 in 118 1955 in 247 0.167 2.4 hrs}

9 400 800 4.0, 9 65 in 164 4628 in 299 0.178T 14.3 hrs.}

TABLE 11

SIMULATION RESULTS WITH TRIVIAL INITIAL SOLUTIONS. A POPULATION SIZE OF 100 WAS USED FOR PROBLEMS #1 TO #3. FOR THE REST OF
THE PROBLEMS, THE POPULATION SIZE WAS 400. TOURNAMENT SIZE = 8, PROBABILITY OF CROSSOVER = 0.30, AND PROBABILITY OF MUTATION

= 0.001 WERE SET FOR ALL THE EXPERIMENTS. 'I' : THE TRANSMISSIONS WAS STILL IMPROVING, BUT WE STOPPED AFTER 300 GENERATIONS. I:

DUE TO SMALL CORE MEMORY, AND EXCESSIVE SWAPPING, THESE COMPUTATION TIMES WERE LONG AND CARRY LITTLE MEANING.
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Fig. 4. Improvement of TDMA length and channel utilization over
generations for 100-node network problems #4 and #5. The upper
curve is for TDMA frame length and the lower one for channel uti-
lization index (p).

netic algorithm parameters: probability of crossover (p.),
probability of mutation (p,), population size (P), and
tournament size (7). It is known that exponentially de-
creasing mutation rate [36], or adaptively modifying the
crossover rate [34] are more useful for genetic search. But,
to make the implementation simple, we kept their values
constant throughout all the generations.

The experiments were done with 100-nodes networks of
different degree of connectivities, which are problems #4
to #6. While finding the effect of one parameter, its value
is changed in steps, keeping other parameters fixed. For
a particular setting of parameters, the algorithm is run
50 times and the average of these 50 runs are noted. Each
run involves number of generations well beyond the conver-
gence of search results. In all the experiments, the trend
of the effect of parameters is independent of the network
with which the experiment is done. The generic trends
are reported as an useful guide for deciding the parameter
values.

Probability of crossover (p.): The commonly used
pc values vary over a wide range from 0.1 to 0.9. The pro-
posed greedy crossover improves the transmission of the
schedule quickly, and thereby hinders the search for short

(a) Effect of crossover probability — (b) Effect of mutation probability —
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Fig. 5. Variation of performance with p; and p,,. Top two curves
are about the quality of the results. Topmost curve is for TDMA
frame length. Second from top is channel utilization index. Bottom
two curves are about the efficiency of the algorithm. Third from top
is the number of generations required for the TDMA frame length to
converge. The bottom curve is the number of generations required
for the channel utilization index to converge.

length TDMA frames. Thus a high value of crossover is
detrimental to find a short length TDMA frame. We var-
ied p. from 0.1 to 0.6 in steps of 0.1. The average result of
50 runs, for the TDMA frame length, channel utilization
index, number of generations required to converge TDMA
cycle length, and number of generations required to con-
verge channel utilization index, for each setting of p. value,
were recorded. The results are shown in Fig. 5(a). The av-
erage results are normalized and then scaled, to put all the
results in a single graph. It shows that the TDMA length
reaches its minimum when p, = 0.3. The channel utiliza-
tion index value is almost unaffected for p. > 0.2. The
number of generations required for convergence is large for
pe = 0.1, but is almost same for higher values. The behav-
ior is very similar for other networks too. Thus, we set the
value of p. = 0.3 for the rest of the experiments.
Probability of mutation (p,): pm, values typically
should be very low, as otherwise genetic search will behave
like random search only. We varied p,,, values from 0.001 to
0.01, in steps of 0.001. The average result of 50 runs, for the
TDMA frame length, channel utilization index, number of
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generations required to converge TDMA cycle length, and
number of generations required to converge channel utiliza-
tion index, for each setting of p,, value, were recorded. The
results are shown in Fig. 5(b). The TDMA length reaches
its minimum when p,, is lowest i.e., 0.001. The channel
utilization index value is almost unaffected. The number
of generations required for convergence, for both TDMA
length as well as channel utilization index, increases with
increase in p,, value. Considering all aspects, we set the
value of p,, equal to 0.001 for all experiments.

Population size (P): The rule of thumb is to use as
large a population size as system limitations (memory) and
time constraints allow. All performance indexes of genetic
search improves with increase in population size. But the
improvement may be insignificant beyond certain size. We
experimented with population size from 50 to 500, in steps
of 50. The results are shown in Fig. 6(a). With increase
in population (1) the TDMA length slightly improved, (2)
the channel utilization index remained almost unchanged,
number of generations required for (3) the TDMA frame
length to converge was almost unaffected, and that (4) for
channel utilization index was a little faster. Little improve-
ments were observed beyond a population size of 400. So,
for all the experiments we set P = 400. The biggest prob-
lem with large population is memory. To keep the previ-
ous and the present generation members for processing, the
amount of memory required is 2 x (P+1) x N(N +1). For
a 400-node network, and 500-member population, the re-
quired memory, just to hold these two population, is more
than 160 Mbyte, considering Os and 1s are saved in single
bytes of memory. Thus, for large N, the population size
has to be limited depending on the available memory.

Tournament size (7): Tournament size 7 = 1 corre-
sponds to no selection, which means that members are ran-
domly picked up and copied to the next generation. With
increasing 7, the selection pressure increases. For most ap-
plications the value of 7 between 4 to 10 are recommended
[20](chap. 24). Experiments were done with different tour-
nament sizes, 2, 4, 6, 8, 10. The results are shown in
Fig. 6(b). The TDMA cycle length was minimum when
the tournament size is 8. The channel utilization index re-
mained almost same for all settings of the tournament size.
The number of generations required for convergence also
reaches low value at 7 = 8. So, for all experiments we set
tournament size at 8.

VII. NEwW GENETIC OPERATIONS ON ELITE INITIAL
PopruLATION

In this section, first we propose a simple and fast ran-
domized algorithm to find a pool of valid solutions of the
problem. Though no optimization criterion is considered
while generating these solutions, it is observed that the
best in the pool is optimum in TDMA frame length, for
all the problems where optimum TDMA length is known.
The algorithm ensures only single transmission per node.
The initial population is made up of such TDMA frames.
As these solutions are already optimized in length, we call
it an elite initial population. The modified GA, defined

(a) Improvement over generations —— (b) Improvement over generations ——
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Fig. 6. Variation of performance with population size and tour-
nament size. Top two curves are about the quality of the results.
Topmost curve is for TDMA frame length. Second from top is chan-
nel utilization index. Bottom two curves are about the efficiency of
the algorithm. Third from top is the number of generations required
for the TDMA frame length to converge. The bottom curve is the
number of generations required for the channel utilization index to
converge.

in section V, is then run to improve the transmission effi-
ciency. It is achieved in a few generations. The solutions
thus produced are the best. In section VII.A, we explain
the randomized algorithm. In section VIL.B and VII.C, the
results are shown.

A. Randomized Algorithm to Create Elite Initial Popula-
tion

For a N-node PRNET, we first create P permutations of
the digits 1, 2, 3,... N, where of course P < N!. Suppose,
an individual permutation sequence II* = (r}, 72, ...7N).
For each different P permutations, the algorithm will create
TDMA frames, T!,T2,...T?,... TF. Thus, T! is created
from the permutation IT', T? from II? etc., by a simple fast

algorithm explained below.

Node— 1 2 3 4 5
. Th = node 5
Time-slot 1 Tt
ime-sio D15 1T s scheduled
@ Th= node5
Timedotl | T | O | O | O | Th | Tb= node 1
®) are scheduled
. Th=
Timedotl | Th | O | O | 0O | Th Té: 28%2;5[
_ TB= node 3
Timesot2 | 0 | O | T8 | O | 0| grescheduled
(©
Timeslotl | T | O | O | O | Th| Ta= node5
T= node 1
Timeslot2| 0 | 0 |Tg| 0| O | J8=node3
Timesot3 | 0 | 0 | O |Tu| O | arescheduled

(d)

Fig. 7. Illustration of the randomized algorithm to create elite TDMA
frame, when the permutation of 5 nodes is 5, 1, 3, 4, 2

The making of T? from IT¢ is explained using the 5-node
example of Fig. 1(a). For N = 5, let us take a permutation
5,1,3,4, 2,ie,m =5, m=1,13=3, mq =4, 15 =2.
For simplicity, we drop the superscript, as we are consid-
ering only one instance. The idea is to allot time-slots for
different nodes in this permutation sequence, as shown in
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Fig. 7. Here m; = 5. So time-slot 1 is allotted to node-
5, i.e., node-5 transmits at time-slot 1. Now if we consult
compatibility matriz D, we know that node-3 and node-4
can not transmit simultaneously with node-5. We put a flag
* at t13, and t;4. The x flag means that the correspond-
ing row (time-slot) can not be assigned to that column i.e.,
the node. The schedule status at this moment is shown in
Fig. 7(a). Next the time-slot allocation is for node 3 i.e.,
node-1. From Fig. 7(a) it is evident that node-1 or node-2
can still transmit in time-slot 1 without interference. So
we allot time-slot 1 to m2 (node-1), i.e., t11 is assigned for
node-1’s (mz’s) transmission. From D we know that node-
2, node-3, and node-4 interfere with node-1. So we need
to put * flag at t;o, t13, and t14, of which ¢;3 and ¢14
are already marked with %. This status of the first time-
slot, which is the first row of T, is shown in Fig. 7(b).
Time-slot 1 is now full. Next we have to allot time-slot
to 73, which is node-3. As time-slot 2 is all free, we allot
it to m3 and change t23 to allotted status. Transmission
from node-3 interferes with all other nodes. So t21, 22,
ta4, and ty 5, all are marked with the flag «. This status is
shown in Fig. 7(c). Time-slot 2 is now full. The next in the
permutation list is 74, which is node-4. As there is no free
time-slot available in column 4 (for node-4) in the existing
time-slots 1 and 2, we have to add a new time-slot 3 for
scheduling transmission from 74. We changed ¢34 to allot-
ted status. Matrix D says that 74 i.e., node-4 transmission
interferes with all other nodes. So, t31, t32, t33, and t3s,
all are marked with *. This status is shown in Fig. 7(d).
We still have to assign a time-slot for 75 i.e., node-2. As
there is no free time-slot available in column 2 in the exist-
ing three timeslots, another row (time-slot) is added to the
TDMA frame, where node-2 is assigned for transmission.
In the schedule it is assigned at t45. Now each node has
its transmission scheduled for once, and we have a 4-row
TDMA schedule, which is not shown in Fig. 7. This solu-
tion is one row shorter than the trivial 5-row schedule. The
algorithm is simple and fast. For a 100 nodes network, in
a VT-alpha 600MHz machine with 512 Mbyte memory, it
takes about 1 second to generate 1000 such solutions. It
will take a few miliseconds in a new PentiumIV machine.

Depending on the permutation sequence, the length of
the TDMA frames will be different. If P is sufficiently
large, many TDMA frames with optimum length would
be generated. By selecting required number of minimum
length TDMA frames, one could create an elite initial pop-
ulation. The distribution of solutions of different lengths
for 100-node network problem #4 is shown in Fig. 8. This
result is obtained by generating 1 million TDMA frames
using the above mentioned algorithm. We see that a little
more than 1% of the solutions are of optimum length 9. So
to create an initial population of 50 elite solutions, we need
to generate about 5000 random TDMA solutions from 5000
different permutations of 1, 2, 3, ...100.
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Fig. 8. Distribution of solutions of different TDMA length for 100-
node network problem #4
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Fig. 9. GA solution for 40-node network problem #3

B. Results with New Genetic Operators on Elite Initial
Population

In this last part of experiments, we use the same problem
set as in the previous section VI.C. We also kept the mem-
bers of the population always valid by using the proposed
crossover and mutations operations. The initial popula-
tions were generated using the randomized algorithm de-
scribed in section VIL.A. The genetic algorithm improved
the channel utilization index in a few generations. Though
the TDMA frame length for all the members of the ini-
tial population are now short, the channel utilization in-
dices are low, (1/M), as there are only one transmission
per node. In a few generations, the channel utilization in-
dex improved to a very high value, while the transmissions
increased by 15-50% of their initial values. In Table. III the
results of these experiments are summarized. In Fig. 9 to
Fig. 10, final TDMA solutions for problem#3, problem#4
and problem#6 are shown.

If the TDMA frame length is optimized, the schedule
is too tight for improving transmissions. With longer
TDMA frames, much better transmission efficiency could
be achieved. If we compare the channel utilization indices
in Table. IT and Table. III, it is evident that the channel
utilization indices in Table. II are better, at the cost of
lengthier schedules.

C. Comparison with recent works

In [25] mean field annealing method was used, for net-
works with number of nodes up to 40. For the same 40-
node network problem, we could improve the TDMA frame
length by one time slot, and the channel utilization in-
dex by more that 3%. Large networks in our experiments
were similar in structure and connectivity, as were used
in [24]. Problem #7(100-nodes, 189-links), #8(100-nodes,
282-links), #10(196-nodes, 370-links), and #13(400-nodes,
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Prob. | Problem specifications | TDMA | Improvement in | Channel Required | Computation
no. No. of | av. Degree, frame number of utilization no. of time for 100
nodes and G+1 length transmissions index p generations | generations
1 14 3.3, 6 6 1417 0.202 11 0.5 sec.
2 16 2.75, 5 5 16—17 0.212 5 1.1 sec.
3 40 3.3, 8 8 40—65 0.203 62 9.5 sec.
4 100 4.0, 9 9 100—133 0.148 36 4.3 min.
5 100 5.0, 9 10 100—118 0.118 22 4.3 min.
6 100 6.0, 9 11 100—115 0.104 23 4.3 min.
7 200 4.0, 9 9 200—267 0.148 60 17.5 min.}
8 300 4.0, 9 10 300—453 0.151 81 42.8 min.}
9 400 4.0, 9 10 400—598 0.149 96 79.7 min.}
TABLE III

SIMULATION RESULTS WITH ELITE INITIAL POPULATION. A POPULATION SIZE OF 100 WAS USED FOR PROBLEMS #1 TO #3. FOR THE REST OF
THE PROBLEMS, THE POPULATION SIZE WAS 400. p. = 0.3, p;, = 0.001, AND 7 = 8 WAS SET FOR ALL SIMULATIONS. I: DUE TO SMALL
AVAILABLE CORE MEMORY, AND EXCESSIVE SWAPPING, THESE COMPUTATION TIMES WERE LONG.
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Fig. 10. GA solution for 100-node network problem #4 with degree of connection 4
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Fig. 11. GA solution for 100-node network problem #6 with degree of connection 6



CHAKRABORTY GOUTAM: GENETIC ALGORITHM TO SOLVE OPTIMUM TRANSMISSION SCHEDULE.. 111

Our solution solutions reported in [24],[25]

Tinks, Tinks,
N | G+1 | M| p N | G+1 | M P
40 66, 8 8 0.203 40 66, 8 9 0.197
100 | 200, 9 9 0.148 100 | 198, 9 9 0.111
100 | 300,9 | 11 | 0.104 100 | 282,9 | 12 0.083
200 | 400, 9 9 0.148 196 | 370,9 | 10 0.100
400 | 800, 9 | 10 | 0.149 400 | 805,9 | 10 0.100

TABLE IV

COMPARISON OF RESULTS OBTAINED BY THE PROPOSED GENETIC
ALGORITHM AND OTHER COMPETITIVE ALGORITHMS. WE PUT
PROBLEMS OF COMPARABLE SIZE AND COMPLEXITY IN THE SAME ROW.
THE FIRST ROW IS COMPARISON WITH WORK REPORTED IN [25]. THE
LOWER 4-ROWS ARE COMPARISON WITH WORK REPORTED IN [24]

805-links) of [24] are similar to our problems #4(100-nodes,
200-links), #6(100-nodes, 300-links), #7(200-nodes, 400-
links), and #9(400-nodes, 800-links) respectively. The first
three problems are slightly more complex in our set up, as
the number of connections are more. For problems #8 and
#10 of [24], our TDMA schedule is better by one time
slot. The schedules in [24] had only one transmission per
node. So we could improve the channel utilization indices
by 15% to 50%. Comparison of results on similar networks
is summarized in Table. IV. In our previous work [23] using
genetic algorithm, we used only small randomly connected
networks. We did not use mutation operation, and there-
fore the improvement of p was slow. Generation of elite
initial population and subsequent improvement of trans-
mission index using genetic algorithm are also new in this

paper.

VIII. CONCLUSIONS

The problem of transmission scheduling for PR network
is NP-complete. Randomized algorithms like neural net-
work and simulated annealing, to solve this problem, were
recently reported. According to our survey, this is the
first time genetic algorithm is used to solve this problem.
Standard genetic algorithm with classical crossover oper-
ator gave good results for small problems only, and failed
for any reasonable size network. We then proposed a new
crossover operator, using some problem specific knowledge,
to avoid invalid solutions. Excellent results were obtained
for big networks (up to 400 nodes were experimented). The
capability of the implemented algorithm to handle big net-
works is restricted only by the size of the available memory.

The algorithm quickly increases transmission, and there-
fore does not achieve the optimum length TDMA cycle,
when trivial initial population is used. Trying variations
in crossover operation and fitness evaluation would be an
interesting extension of this work. It is also interesting to
add a fairness term in the fitness function and check the
outcomes. The fairness is to ensure that while increasing
transmission they are uniformly distributed over the nodes.

In section VI.C.1, we find that the results are hardly
affected by the setting of the parameter values, even when
they are varied over wide ranges from the commonly used

settings. That is, the algorithm is robust against parameter
values.

Adaptive tuning of crossover and mutation probabilities,
larger values in the beginning and less at end generations,
is an useful recipe for improving efficiency of GA. Another
suggestion is that, the selection pressure too should be less
in the beginning and increased slowly. To simplify the sim-
ulations we have not implemented such fine tuning of the
algorithm.

As it is impossible to precisely specify an objective func-
tion for fitness calculation of the members of the popula-
tion, ranking of the members is the only option available.
In this case, the objective function is a subjective prefer-
ence only. Additionally, by rank-based selection, we avoid
the problem of fitness scaling. We used tournament selec-
tion. There are many other methods of selection based on
ranking. For example, one possibility is to use a nonlinear
probability function (chap.4 of [22]),

prob(rank) = g(1 — )™

where, prob(rank) is the probability that an individual
with rank = rank will be selected to the next generation.
Here, ¢ controls the selection pressure. Other selection
methods as above, are possible experimental extension.
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