
A Reliable Graph Clustering Method Using Genetic Algorithm

Goutam Chakraborty† and Naoki Sato†

†Faculty of Software and Information Science, Iwate Prefectural University
152-52 Sugo, Takizawa, Iwate 020-0693, Japan

Email: goutam@iwate-pu.ac.jp

Abstract—
In several domains, the available information can be

represented as a graph where an unit of information
is a node, link between two nodes is a relation. Two
web-sites on the internet are connected, if there is a hy-
perlink from one to the other. Members of a social net-
work are connected as a graph. Scientific papers can
be connected through common key-words, citations, or
authorship. Such networks form communities, where
within communities node interconnections are dense,
and between communities sparse. Finding those com-
munities efficiently, and central nodes in them, are two
major problems for several mining applications. To
identify communities one needs to cluster the network.
Existing algorithms, like k-means, need a pre-defined
value of the number of clusters. In this work, we in-
troduce a genetic algorithm based approach, where the
whole graph is automatically divided into its intrinsic
clusters, through a few generations of genetic search.
By simulations on large networks (up to 1000 nodes)
with known clusters, we have shown that the algo-
rithm finds correct clusters in a few generations with
very few mis-labeled nodes. With sufficient run time
it always finds the correct solution.

1. Introduction

Units of information are often related and form
a graph, where a link represents a defined relation.
Its analysis reveal interesting, useful and important
knowledge. As information is growing, interest in an-
alyzing such network to facilitate useful applications,
is getting strong attention. Knowing the community
structure leads to higher level knowledge. One classi-
cal example of information network is Erdos collabo-
ration graph, where two mathematicians are joined by
a link, whenever they co-authored a paper together,
and grown inductively. “During the height of Lewin-
sky scandal, the New York Times printed a diagram of
the famous people within six degrees (links) of Mon-
ica” [1]. On the internet, one web site is connected
to another if there is a hyperlink. This will lead to
a directional graph. Clustering and ranking (page-
ranking) of the web-sites is the key to web searching
algorithms. Another example is Twitter, where users
are connected by follow-up and follower relationship.

Efficient clustering of the graph, where the number of
clusters is not known, is the first important step to
discover the pattern from a graph.

Social network and many other biological and natu-
rally occurring structures form such relational graphs,
which fall into a class of random graphs called scale-
free or Small-world network (SWN) [1] [3] [2]. For
SWN, the estimated distance (hop count) between two
randomly selected nodes is short, and grows propor-
tionally to the logarithm of the number of nodes in the
network, while the clustering coefficient is not small.
Another property is that, a few nodes have a high
degree, and others low. The degree distribution fol-
lows a power law [1]. Around nodes with high degree,
there are formation of clusters. WWW, electric power
grid, network of brain neurons, voter networks, airline
routes are only a few examples. Many other naturally
occurring phenomenon form this so-called SWN [4].
Physically, Small World Network forms a set of com-
munities, where within a community there is a strong
relationship whereas a few links among communities.
This work is to find these communities in an evolu-
tionary way, without a-prior knowledge of how many
communities are there.

Clustering is an age old problem, where we have
data points in a high dimensional space and their mu-
tual distances are defined, or needs to be defined in
certain way depending on the application. By clus-
tering, we cluster data points into groups where inter
cluster distances are more than intra-cluster distances.
Graph clustering problem is different in the sense that
there is only the concept of connectivity between two
nodes. A good survey of graph clustering is available
at [5].

The main contribution of this work is that (1) the al-
gorithm automatically evolves to find the correct num-
ber of clusters, and (2) it does not converge in local
minimum. We synthetically created SWNs of differ-
ent sizes with different numbers of clusters to evaluate
our algorithm. Benchmark graphs were created using
method described in [11], where the clustering results
are known. With a large number of experiments, we
have shown that with enough generations, the algo-
rithm always converges with all nodes correctly as-
signed to their clusters.

The rest of the paper is as follows. Section 2 is about



related works. In section 3, we explain the proposed
algorithm. In section 4, we discuss about motivation of
preliminary experiments and their results to plan the
final experiments. The results of the final experiments
and conclusion are in section 5.

2. Related Works

Graphs created using links between two information
nodes could be directed, forming a digraph. In this
work, we consider undirected graphs.

Graphs, created from information gathered from
social network sites like twitter or facebook, brings
to light users’ choices and preferences, and promotes
business opportunities. In recent years, this is one of
the main research topics in social network information
[6]. Depending on the target application, different re-
lationsip is used for connecting two nodes. In many
applications, not only clustering but also finding cen-
tral nodes in individual clusters is important.

Leicht et.al. [9] develop ideas of concept equivalence.
The link structure around similar nodes is considered
as similarity indexes of nodes and classify nodes on
basis of this similarity.

Modified k-means clustering can find clusters in a
graph [6]. But, one needs to assign the value of k a-
priori, a correct guess of which is impossible with many
applications.

In [7], a genetic algorithm approach is proposed.
Chromosome structure used in this work is similar.
Simulation results show that their GA would converge
to local minimum around 20% of the time. The reason
is the fitness function which defines the search space.
We used a different fitness function as explained next.

Algorithm proposed in [8] is to find the part of the
network where nodes are densely linked. It gives a
mathematical measure of how much modular [2] a net-
work is. We used the same measure to find fitness of
a chromosome which is explained here. Suppose, Aij

is the adjacency matrix. Nodes i and j belongs to two
clusters, Ci and Cj . We define function δ, similar to
Kronecker delta function. δ(Ci, Cj) is 1, when nodes
i and j belong to the same cluster. Thus, the fraction
of edges that fall within communities, is

∑

ij Aijδ(Ci, Cj)
∑

ij Aij

=
1

2 E

∑

ij

Aij

where, E is the total number of edges. Once we cluster
the nodes, the more the above value is, the better is
the modularity of partitions. As such, it could not be
used as the fitness function, as then the best result will
be when we have just one cluster. Once we subtract
from it, the quantity expected for a random network,

Q =
1

2E

∑

ij

(

Aij −
kikj

2E

)

× δ(Ci, Cj) (1)

we get Q which could be a measure of how success-
fully the network is divided into clusters. Here, ki and
kj are degrees of node i and j, respectively. If Q is
zero, connections within clusters are no better than a
random network. A value of 0.3 or more, with clusters
properly defined, indicates reasonable good commu-
nity structure.

3. Proposed Method

We used conventional genetic algorithm [10]. The
pseudocode of the algorithm is as follows. The best
chromosome is used for clustering.
Input: Graph(V,E)
Output: Set of clusters C1, C2, . . .

1. Generation of the Initial population
2. Perform Cross-over on selected chromosomes
3. Perform mutation on the selected genes
4. Fitness evaluation and tournament selection,

formation of next generation
5. if (convergence == true)

end
7. Else

goto step 2

3.1. Chromosome and Initial population

1 2 4

3 7

6

5

8

Node 1 2 3 4 5 6 7 8

Chromo

some

2 3 1 5 4 5 6 6

1 2 4

3 7

6

5

8

Figure 1: How a chromosomes creates community?

To explain how initial chromosomes are generated,
in Fig. 1, we give an example of a 8-node network,
a sample chromosome and how that chromosome is
interpreted as two clusters.

The length of the chromosome is the same as the
number of nodes. Chromosome is the lower row, where
genes denote node numbers. The entry of slot #1 is



filled by any of the nodes connected to node #1. Since
nodes #2 and #3 are connected to node #1, any one
of the two is entered. Similarly, below #2 any of the
nodes that are connected to node #2 are put. We
continue till the node count, here 8 is reached. Genes
could be repet, like 5 and 6 appear two times. If aver-
age node degree is k and N the number of nodes, kN

is the size of the search space.
The cluster from the chromosome is shown in the

lower half of Fig. 1. Here, we connect node 1 to 2, 2
to 3, 3 to 1, etc. till the last node 8. This chromosome
divides the network into 2 clusters. Finally, we connect
the rest of the links, and evaluate the fitness

3.2. Fitness function

The fitness Q is calculated as described in Eq. 1 [8].
We calculate the value of Q = 0.56 for this partition.
For a bad chromosome, which would create two clus-
ters as C1 = {1, 2, 3, 4, 5, 7} and C2 = {6, 8}, the Q

value will be 0.25. Chromosome is first expressed as
set of clusters, and then Q value for that clustering is
calculated as the chromosome’s fitness.

3.3. Crossover, Mutation, Selection

Uniform crossover is used. A mask pattern of length
equal to that of the chromosome, consists of a ran-
dom sequence of 0 and 1, forms the mask. Two chro-
mosomes are first selected for crossover. Where the
mask pattern is 1, the entries in two chromosomes are
swapped. If the mask entry is 0, leave the correspond-
ing gene as it is. The crossover probability is set to
90%. The population size was 100. At every gen-
eration 90 chromosomes were randomly selected for
crossover. Mutation probability was 0.1%. During
mutation, network connectivity information is used,
so that mutation do not generate invalid chromosome.

Tournament selection with tournament size 2 is
used. Though convergence is slow because of small
tournament size, the exploration of search space was
good. The best chromosome is saved at every genera-
tion. If the best chromosome of the next generation is
better than the one saved, it is replaced.

3.4. Convergence rule

For an unknown network, it is impossible to know
what would be the Q value, even when all nodes are
correctly assigned to their respective clusters. The
convention is to run for a large number of generations
and expect that the algorithm will converge to global
optimum. The other possibility is to check whether
the fitness is improving or not, for a few generations
in a row. We performed a set of preliminary experi-
ments, with networks of known clusters, to see how it
is converging, and from there to find a cue to set the
stopping criterion.

4. Preliminary Experiments

We created a set of benchmark networks [11] for
which the clusters and their member nodes are known,
and from which Q values for correct clustering are cal-
culated. An example 100-nodes network is shown in
Fig. 2. Please note that for visual clarity links within
clusters are drawn very short.

1

Figure 2: Clusters of 100-nodes network

We created a 500-nodes network and calculated its
Q value when all nodes are correctly classified. We run
genetic algorithm five times. The algorithm is stopped
when the fitness reached the maximum Q value of 0.76.
We use the term that 100% Q value is achieved. De-
pending on the problem and randomly generated ini-
tial population, the number of generations needed are
different. The results with running time are shown in
the top 5 rows of Table. 1. The average run time was
about 74 mins. In the next experiment the execution
of the genetic search was stopped when fitness reached
95% of the Q value. Results, this time, are shown in
the lower 5 rows of Tab. 1. The average run time now
is only 11 mins. i.e., a reduction of 7 times.

Table 1: Convergence with 100% Q - 500 node network
Expt # Generations time(sec.)

1 255 2957.7
2 178 2135.6
3 263 3197.5
4 834 10217.4
5 305 3588.2

average 367 4419.2

1 76 643.3
2 75 8226.0
3 109 962.3
4 63 600.2
5 49 468.2

average 74.4 700.0

But, what is the quality of result? The number of
clusters in both the cases were same, i.e., we could ter-
minate with correct number of clusters. But, we end



up with some nodes mis-classified - some peripheral
nodes are assigned to neighbor cluster. For them links
towards its assigned cluster is less compared to outgo-
ing links to the cluster to which it actually belongs.
They are a few, around 2 to 3, which could be quickly
corrected manually. We also did similar experiments
with 1000 nodes network with similar results. They
are not included due to space constraint. In summery,
terminating with 95% of Q we could get order of time
saving, still with correct number of clusters. Only a
few peripheral nodes are mis-classified, which could be
easily corrected manually.

For an unknown problem, as we do not know 100%
Q value, this can not be used as a convergence crite-
rion. Number of generations is the simplest stopping
criterion. To find the required number of generations,
with respect to number of nodes, we run the experi-
ment 100 times with 500 nodes network. The maxi-
mum, minimum, and average of Q value, at the end of
every 10 generations were plotted in Fig. 3. The av-
erage approaches the maximum, as we near 200 gen-
erations. In fact, the minimum at 200 is from only
one run. From this result, we can claim with high
confidence that for a 500 node network, 200 search
generations are sufficient. At the end of 200 genera-
tions, 77 out of 100 runs the fitness value exceeded 98%
of Q = 0.7805. For different randomly generated 500
nodes networks, % of Q achieved after 200 generations
is shown in Table. 2

Number of Nodes 500, 6 clusters

Number of Generations

F
it

n
e

ss
 (

%
)

Average

Minimum

Maximum

Figure 3: Average of fitness as it improves with gener-
ations

5. Conclusion and Future Plan

For a modular network, with high Q value, our al-
gorithm gives better results. Finally, only 2 or 3 fringe
nodes are wrongly classified.

Though, the proposed algorithm could always find
global optimum, the fitness function computation is
complex and prohibitive when the number of nodes is
10,000 or more. We are working on a more efficient
fitness function to be able to process a million nodes
net.

Table 2: Results: 500-nodes networks, 200 generations
Expt Q Q 200 % of # error
No. value gens Q nodes

1 0.7473 0.7410 99.1 2.4
2 0.7323 0.7151 97.7 3.1
3 0.7753 0.7695 99.3 2.1
4 0.7519 0.7445 99.0 2.8
5 0.7705 0.7638 99.1 1.8

References

[1] Steven H. Strogatz, “Exploring Complex Net-
works,” Nature, vol 410, pp. 268–276, March 2001.
2015.

[2] M. E. J. Newman and M. Girvan, “Finding
and evaluating community structure in Networks,”
Physical Review, E, vol. 69, 026113, 2004.

[3] M. Girvan and M. E. J. Newman, “Community
Structure in social and biological networks,” Proc.
of National Academy of Science, USA, vol. 99,
pp. 7821–7826, 2002.

[4] Qawi K. Telesford, et. al., “The Ubiquity of
Small-World Networks,” Brain Connect, Vol1(5),
pp. 367–375, December, 2011.

[5] Schaeffer, Satu Elisa, “Graph clustering,” Com-
puter science review, Elsevier, 1.1. pp. 27–64, 2007.

[6] Lemaire, Vincent, Fabrice Clrot,and Nicolas Creff,
“K-means clustering on a classifier induced repre-
sentation space: application to customer contact
personalization,” Real World Data Mining Appli-
cations. Springer, pp. 139–153, 2015.

[7] Clara Pizzuti, “GA-Net: A genetic algorithm for
community detection in social ,” LNCS 5199,
pp. 1081–1090, 2008.

[8] Aaron Clauset, M.E.J.Newman, and Cristopher
Moore, “Finding community structure in very large
networks,” PHYSICAL REVIEW E 70, 066111,
2004.

[9] E. A. Leicht, Petter Holme, and M. E. J. Newman,

[10] M Mitchell, “An Introduction to Genetic Algo-
rithms,” MIT press, (ISBN 0262631857), 1998.

[11] Andrea Lancichinetti, Santo Fortunato, and Fil-
ippo Radicchi, “Benchmark graphs for testing com-
munity detection algorithms,” PHYSICAL RE-
VIEW E 78, 046110. 2008.


