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1 Introduction

Finding optimum Steiner tree is a well known NP-hard problem. Many
recent works show that Genetic Algorithm (GA) is a viable alternative to
heuristic approaches to solve constrained optimization problems. In the orig-
inal problem proposed by Georg Steiner, the nodes are points in a plane and
the costs of the links are Euclidean distance metric i.e. triangle inequality
holds. In [1] it was shown that this problem is NP- complete.

Depending on the application, there are variations to the original Steiner
tree problem. In the next section, we will give brief introduction to four
different variations indicating corresponding application areas.

Different genetic algorithm based approaches to solve Steiner tree prob-
lems are discussed in this article. In section 3, a brief introduction to genetic
algorithm [54], [55], [56], [57] and how it works to find global optimum so-
lution in case of NP-complete problems, is described. Following that, in
section 4, we will introduce genetic algorithm approaches for solving the
problem of minimum Steiner tree in graph [24], [25], [61], [62], [63]. The
solution to a delay constrained version of the minimum cost Steiner tree in
graph problem was recently proposed in [36], and is explained in section 5.
Genetic algorithm approach to solve minimum Euclidean Steiner tree prob-
lem, as proposed by Hesser [44], is introduced in section 6, followed by the
proposal by Julstrom [53] to solve minimum Euclidean rectilinear Steiner
tree problem in section 7.

While calculating chromosome fitnesses, most of the GA based approaches
depend on some previously proposed heuristic algorithms and/or problem
reduction techniques, which will be briefly discussed as and when necessary.
We will also compare results obtained by other conventional methods when-
ever available. In conclusion, in section 8, we will mention the strong and
the weak points of the genetic algorithm approaches, and discuss what are



yet to be done to accept it as a reliable alternative for solving various Steiner
tree problems.

2 Variations of Steiner Tree Problem and Appli-
cations

2.1 Minimum Steiner Tree in Graph (M StTG)

Given a distance graph G = (V, E) and a subset of vertices D C V', a Steiner
tree is a tree in G that spans all the nodes in D = {d;,dz,...,dx}. The
minimum Steiner tree in graph (M StTG) is the Steiner tree for which the
total distance on its edges is minimum among all possible Steiner trees for
given G and D. It is possible that the MStT'G uses set of nodes D' =
{d1, da,..., dk, ..., dg'}, where D' D D. The nodes in (D' — D) is called
Steiner nodes. In the example of Fig. 1, M StT'G is shown with thick lines.
Here D = {v1,vy4,v5,v7,v8}, but other node vg of the original graph G is
used to construct the M StT'G. Thus node vg is a Steiner node.

Vg

(x) = (cost)

Figure 1: An example of Steiner tree in Graph

The problem of finding M StT'G is proved to be NP-complete [1], [2].
Considerable research works had been done to solve it during the last three
decades. Several algorithms, mostly during 70’s were proposed [6], [7], [8],
[9] to find the optimum solutions. But they are exponential in computation



time and are applicable only for small problems. During early to mid 80’s,
many polynomial time heuristic algorithms [10], [11], [12], [13], [14], [15]
were proposed, which are very efficient to find good near optimum solutions.
Some of them [11] also ensure worst case bound on solution quality. During
late 80’s, there were proposals [16], [17] to reduce the complexity of the
problem by some reduction methods for the number of vertices and edges.
The most recent heuristic algorithms are due to Beasley in 89 [18], Voss in
'92 [19], Winter et al. in 92 [20], Chopra in "92 [21], and Zelikovsky in '93
[22]. From early 90’s there is a new trend of approach using soft computing
methods and random algorithms to solve the M StT'G. The earliest one is
using simulated annealing due to Dowsland in ’91 [23], followed by proposals
based on genetic algorithm in mid 90’s [24], [25]. Neural network algorithms
are also proposed around the same time [26], which we will discuss in another
article in this book.

M StTG finds application in many problems where there is an existing
network and we need to join optimally a sub-set of vertices. In recent years,
the most useful application is to connect servers on a computer network
for multicast communication. Other applications are like distribution of
electricity from a source to different destinations over a power grid network,
multiprocessor scheduling. A nice survey of this problem and applications
could be found in [27], and [28]. A variation of the M StT'G problem arises
in multicast communication when continuous media (like audio, video) is
to be transmitted over the network. This problem is discussed in the next
section 2.2.

2.2 Constrained Minimum Steiner Tree in Graph (CM StTG)

With the recent advancement in computer, high speed transmission and
switching technology, computer networks are now capable of carrying con-
tinuous media traffic like voice and video. Most of these multimedia ap-
plications are not one-to-one but one-to-many or many-to-many and need
multicast support. Multicast is the ability to logically connect a subset of
hosts in a network. A packet switched network (PSN) is said to be able to
provide multicast service, if it can deliver copies of a packet to a set of des-
tinations simultaneously. Here, optimization goal is to minimize the overall
cost of the multicast tree - which is the M StT'G problem. Yet, for meaning-
ful multimedia communication, some quality of services (QoS) requirements
has to be satisfied for all end-to-end transmissions. Most important require-
ments are end-to-end delay, delay-jitter and bandwidth. End-to-end delay



is the total added delay on the links of the path from source to destination.
This has to be considered for all paths from source to different destinations,
while constructing the multicast Steiner tree. We name this problem as
constrained minimum Steiner tree in graph CM StTG.

The problem of CM StTG is illustrated with a simple example in Fig. 2.
With every link two parameters are assigned, the first is the cost of the link
and the second is the delay. Here, v; is the source, and the destination
nodes are {v4,vs,v7,v8}. Apart from reaching all the destinations from
the source, a constraint that the delay should be < 15 units, has to be
maintained. Path (v, vs, vg, v7,v8) from source v; to destination vg, as was
selected in Fig. 1 with its total path delay of 18, could not satisfy this delay
constraint. Therefore, though costlier, in this situation path (v, vs,vs) has
to be chosen to reach vg from v;.
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Figure 2: A Constrained Minimum Steiner tree

Heuristic solution to this constrained M StT'G problem was proposed in
[29], [30], [31], [32]. A neural-network approach to solve this problem was
proposed in [33], [34]. Recently there are two GA based papers [35], [36]
on multiple destination routing problems, i.e. multicast routing. Leung
et al. paper [35] did not consider any constraint, whereas Zhang’s paper
[36] considered the delay constraint. In Section 5, we will discuss Zhang’s
work in detail.

Another variation of the multicasting problem in network arises, when
the participants join and leave the group during the lifetime of the session.



This is called dynamic multicasting. Even when the joining and leaving time
of the participants are available, it is a challenging problem to optimize the
total cost of the Steiner tree over the whole session period. A heuristic
solution is proposed in [37]. A genetic algorithm approach could be an
interesting research topic.

2.3 Minimum Euclidean Steiner Tree (M EStT)

Apart from the above problem of Steiner tree in graphs, there is another
class of problems which arises during the planning and construction stage
of large networks. There we only have a set of points (nodes) in a defined
space to be connected optimally, and there is no underlying graph already
present. In general, we can add intermediate points arbitrarily in number
as well as at any locations. This type of Steiner tree problem is called
as Euclidean Steiner tree problem, mainly because the applications involve
Fuclidean distance metric. We also confine all the subsequent discussions in
2-dimensional plane.

Formally, we have a set P = {p1,p2,...,pn} of N coplanar points, often
called site nodes. The minimum Euclidean Steiner tree problem (MEStT) is
to find the shortest tree connecting all N points, where the tree may contain
nodes in the plane other than the site nodes. This set S = {s1,892,...,5m}
of M extra vertices are called the Steiner nodes.

A simple example is given in Fig. 3. Here, the four nodes shown as hollow
circles are to be connected by a minimum distance tree. If we just connect
them by minimum spanning tree (M SpT'), we get a tree as in Fig. 3(a) with
cost 10. But if we add an extra (Steiner) node, shown as solid circle in
Fig. 3(b), then the distance of the tree is reduced by more than 10%.

Similar comparison is shown in Fig. 4. Fig. 4(a) is the M SpT and
Fig. 4(b) is the M EStT, where three Steiner nodes are introduced.

Finding M EStT is more flexible in the sense that one can add any
number of intermediate nodes at any suitable locations to make the distance
of the tree minimum. Yet, for the same reason, it makes the computation
hard and it grows exponentially with increase in N. This problem had
been proved to be NP-complete [38]. Exact methods [39], [40] to find the
M EStT are based on finding the optimum among all full Steiner trees, where
the number of steiner nodes K = (N — 2). They decomposed the problem
into smaller subsets and solved. Even then it is computationally heavy and
could not be used for N > 30. Cockayne et al. [41] further improved their
earlier algorithm proposed in [40] to solve problems up to 100 site nodes in
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Figure 3: Minimum spanning tree vs. minimum Steiner tree: Example 1

reasonable time. The best known heuristic, based on spanning tree, is by
Beasley [42]. A simulated annealing algorithm was proposed by Lundy [43].
Comprehensive surveys are done by Gilbert and Pollak [38], and Hwang and
Richards [28]. In this article, we will discuss genetic algorithm approach by
Hesser [44] in section 6.

M EStT problem finds its applications at the stage of planning and con-
struction of large networks, say telecommunication network, power distribu-
tion network, or laying of oil pipelines. In such construction works, most of
the cost is involved in realizing the links, and in general we can choose inter-
mediate Steiner points more or less arbitrarily. In [45], a practical example
for constructing communication network connecting the main cities of US
is discussed with projected cost savings by proper design of Steiner nodes.
We face similar problems for designing printed circuit boards, VLSI pack-
ages, mechanical systems in buildings etc. where very high order M EStT
problems are to be solved.

2.4 Minimum Euclidean Rectilinear Steiner Tree (M ERStT)

The Euclidean Rectilinear Steiner Tree (ERStT) problem is similar to Eu-
clidean Steiner tree problem, with the restriction that the edges to connect
the set of nodes are all horizontal and vertical line segments. Here too we
consider 2-dimensional Euclidean space. As usual the problem is to find the
Minimum distance Euclidean Rectilinear Steiner Tree (M ERStT). In Fig. 5
we illustrate this problem. Here, 9 site nodes are connected by horizontal
and vertical line segments to form the M ERStT, as shown in Fig 5(b).
Garey and Johnson [46] had shown that the general case of M ERStT is
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Figure 4: Minimum spanning tree vs. minimum Steiner tree: Example 2

NP-complete. Polynomial time algorithms for special cases were proposed
by Aho, Garey and Hwang [47], and Agarwal and Shing [48]. Hwang in [49]
had shown that the cost ratio of of M SpT and M ERStT is not more than
3/2 and therefore many heuristic algorithms [50], [51] take M SpT as the
starting point. The heuristic algorithm proposed by Ho, Vijayan and Wong
[52] could produce optimum solutions under some conditions (e.g. when
the layout of each edge is L-shape etc.). A genetic algorithm approach for
MERStT by Julstrom [53] will be discussed in detail in section 7.

3 Introduction to Genetic Algorithm

Genetic Algorithm (GA) is a search algorithm based on the mechanics of
natural selection [54]. Compared to other approaches, they are superior
because, of wide applicability. They make few assumptions from the problem
domain, and are not biased towards local minimums. At the same time, GAs
are very efficient to direct the search towards relatively prospective regions
of the search space.

The first step in GA is to encode the solution of the problem in binary
bit string. The solution in its original form is referred to as phenotype,
whereas its binary encoded version is called genotype or chromosome. It is
best to have a one-to-one mapping between the solution of the problem and



(@ (b)

Figure 5: Minimum rectilinear Steiner tree

the chromosome representation. But it is possible to have a one-to-many
mapping, where these redundant chromosomes could be the cause of inef-
ficiency of GA. Many-to-one mapping from solution to chromosome is also
possible, where the result obtained using GA would lack details and need
some post-processing. The phenotype may be thought of as the semantics
or the interpretation of the genotype. In general, there should be an easy
and preferably injective mapping from genotype to phenotype. Each chro-
mosome is composed of genes, the basic units of informations. A gene is
usually a simple binary bit. It may be different, as we will see in orthogonal
genetic algorithm in section 5. Though, for some problems, the shape of
the search space and therefore the complexity of the search depends on this
coding, in practice it is done in the easiest and most obvious way. In many
problems, where the natural representation of the solution is in 1/0 string,
phenotype and genotype are same.

Next, a pool of solutions of the problem, called initial population, is
created. These solutions are generated simply randomly, without any con-
sideration to how good they are. A fitness function has to be defined to
measure the goodness of these encoded solutions. Genetic operators selec-
tion, crossover and mutation operate on the population to generate new
population, i.e. new set of solutions, from the old ones. Good solutions
are selected with greater probability to the next generation, in line with the



idea of survival of the fittest. Crossover operation recombines arbitrarily
selected solutions pairwise, by interchanging portions of them, producing
divergent solutions to explore the search space. An occasional mutation op-
eration is performed on a chromosome by flipping a bit at random position
of the encoded chromosome, to facilitate jumping of solutions to new unex-
plored regions of the search space. As the algorithm continues and newer
generations evolve, the quality of solutions improve. The success of genetic
algorithm is explained by schema theorem and building block hypothesis in
[55].

Many strategies for fitness calculation, selection, crossover and mutation
are proposed. The basic steps for the Standard Genetic Algorithm (SGA)
are shown below.

Algorithm SGA (g, MAX, ®(g),P)
01 begin
02 g =0; /* g: generation number */
03 Create P members of the initial population ®(0);
/* P: population size,*/
/* ®(g): set of members at generation g */
04 Calculate fitnesses of the members of II(0);
05 while (¢ < MAX) /* MAX: maximum generation */
06 g:=g-+1;

07 '(g) LT F(g—1);
08 P'(g) TEZT 9"(g);
09 o(g) ™" @(g);
10 endwhile

11 end

Figure 6: Algorithm for Standard Genetic Algorithm

The success of genetic search depends on balancing the two aspects of (1)
population diversity i.e. exploring the different regions of the search space,
and (2) selection pressure i.e. to get to the optimum point fast. If the best
few members of the initial population predominate the whole population in
a few early generations, due to their much better fitnesses, it would result
in poor exploration and premature convergence to suboptimal solution. On
the other hand, at later stage of the search, when high performance regions
are identified, disruption of good chromosomes after crossover with bad ones
would slow down the process of reaching the global optimum. A number of
strategies were proposed [56](chapter 4 & 6), [58], [59], [60] to overcome this
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problem by setting a balance between diversity of solutions in the beginning
and selection pressure to concentrate on the best during later generations.

For constrained optimization problems, all encoded strings may not sat-
isfy the different constraints. There are two possible approaches to overcome
this problem:

1. Use the standard genetic algorithm and allow all encoded solutions,
valid and invalid. Invalid solutions are penalized so that they may
not go to the next generations. Valid solutions are assigned fitnesses
according to how good they are, with respect to the optimization cri-
teria.

2. The chromosome representation, the crossover and mutation opera-
tions are defined such that invalid solutions are always avoided. Higher
fitnesses are assigned to chromosomes representing better solutions.

The above approach (1) is easier and softer (problem independent). But
in practice they can produce optimum or near optimum results only for
small problems. When the size of the problem and/or the accuracy of the
solutions are increased, due to explosive increase in the size of the search
space mostly crowded with invalid solutions, finding optimum or near op-
timum valid solution is almost impossible. The other problem is how to
decide to what extent the invalid solutions are to be penalized. Between
two invalid solutions, to what extent they are violating the constraint is
difficult to judge? The fitness calculation then heavily affects the efficiency
of the algorithm, and the quality of the solution.

Approach (2) is harder (problem specific approach) because we have
to define the solution representation and/or genetic operators, so that the
chromosomes always represent valid solutions. Therefore, the algorithm
gets more strongly associated with the particular problem. As the valid and
invalid regions are interlaced, it is difficult to define genetic operations that
make the offsprings always valid. Correcting invalid chromosomes to their
nearby valid ones is computationally costly. Yet, because the search space
is now restricted to valid solutions only, the algorithm is more efficient, and
the quality of solutions much better.

In Steiner tree problem, it is difficult to define problem specific crossover
operators which would combine good parts of different solutions i.e. which
in essence will support building block hypothesis. In this article we discuss
how these problems are overcome in different research works.
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4 Solving M StTG Problem by Genetic Algorithm

In [24] and [25], GA was used to solve M StT'G problem. They are two
different approaches. We discuss them separately, in sections 4.1 and 4.2.

4.1 The Work by Kapsalis et al. 1993

Kapsalis, Rayward-Smith and Smith [24] for the first time used GA to solve
MStTG problem.

General considerations
Let the given graph be G = (V, E). D = {d;,da,...,dk} is the set of nodes

to be spanned and D' = {d;, ds,..., dk,..., dg'} are the nodes actually
spanned by the Steiner tree. The nodes in (D' — D) are Steiner nodes. The
chromosome is a bit string of length |V | = N, where V' = {v1,v9,...,on} is

the set of nodes of the original graph. Bit position ¢ in the string represent
node v; of G. If node v; is in the Steiner tree the corresponding bit is 1, and
otherwise 0. For the example in Fig. 7(a), as the number of nodes in G is
8, the length of the chromosome, shown in Fig. 7(b), is 8. The Steiner tree
is formed with nodes vy, v4, vs, vg, vy, vg and therefore we have 1s in the
corresponding positions of the chromosome, as shown in Fig. 7(b).

When a chromosome represent a solution to the Steiner tree problem,
all positions representing nodes in D have to be 1. There are two ways to
enforce this condition,

1. Allow any bit string and penalize those chromosomes that does not
contain nodes in D, by assigning very low fitnesses.

2. Logically OR every chromosome with the one that represents only the
nodes in D and thus try to make them valid. This does not always
make the chromosome valid, as those nodes may not form a tree.

The second strategy works better, especially for bigger problems. One pos-
sibility is to consider only G — D nodes and form chromosomes of length
|G — D] to search for the Steiner nodes. Nodes in D are selected by default.

Another possible approach is to select proper edges of the graph. Then
the chromosome length will be equal to the number of edges in the graph.
GA would search the set of edges needed to form the optimum Steiner tree.
Here fitness evaluation is easy, but the length of the chromosome would
obviously be longer and therefore the search space is much wider with many
invalid members.

12
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Figure 7: An example with 8 nodes graph

For creating the initial population many approaches are possible. The
simplest is to create them at random, i.e., (1) put 1s at random positions
in the chromosome. This will create many invalid solutions too. The other
possibilities are, (2) this randomly created population is seeded by including
a feasible solution equivalent to the minimum spanning tree of the entire
graph, and (3) this minimum spanning tree is trimmed by a heuristic.

Regarding population size, the bigger is the better in general. A large
population is a must when the search space is multimodal with many local
optimums. But it means heavier computation and longer run time. Small
population size may, on the other hand, lead to limited exploration of the
search space and get trapped in local optimum. Kapsalis et al. In [24] found
that a population size of 10 is a good choice.

Fitness evaluation: The fitness evaluation of the chromosomes were
done as follows. The chromosome represents a set of nodes U C V. A
subgraph of G induced by U U D is constructed. Let the subgraph consists
of L > 1 components, where all L components are separated. The minimum
spanning tree for those components were found using Prim’s algorithm [4].
Now the components are summed up to form the tree and the total cost is
calculated. For L > 1, a large positive penalty, linearly proportional to L,

13



is added to the previously calculated cost. This cost for every member of
the population is calculated, and finally subtracted from the maximum of
them to find the fitness. Thus the tree with least components and cost will
have highest fitness, and the worst member will have fitness 0. As Prim’s
algorithm is fast, and additionally some evaluations could be stored and
reused, the fitness calculation for all members could be done fast.

Genetic operations

Selection: Kapsalis et al. [24] used two types of selection mechanisms.

1. Roulette selection [55]: Here the probability of a solution to be selected
to the next generation is proportional to its fitness. Naturally a solu-
tion with high fitness could be multiply copied to the next generation.

2. Ranking [56]: The solutions are ranked according to their fitnesses,
better fitness higher rank. A solution is selected according to its posi-
tion using a scaled Fibonacci sequence to favor solutions with higher
rank.

Crossover and Mutation: After chromosomes are selected to the
next generation, crossover and mutation operations are performed on them.
For crossover, a portion of the population, determined by crossover proba-
bility p., is chosen randomly. It is then rounded to even number and paired,
again randomly. For every pair, a location is randomly selected and the
portion from that location to the end is swapped. It is reported that the
value of p. has little effect on performance, and p. = 0.9 is marginally better.
For mutation, bits on all chromosomes are flipped randomly with mutation
probability (p,,), and a value of p,, = 0.02 is used. It was also mentioned
that the performance was unaffected over wide choice of p. and p,,.

New generation: After selection, crossover and mutation, a new pool
of members is generated. The new population could:

1. Replace the whole of the old population, as in Fig. 6 (Replace all).

2. Replace the worst solution of the old population by the best solution
of the new generation. Replace the second worst solution of the old
population by the second best of the new population and so on, until
no improvement is achieved (Best for worst).

Thus, one cycle of generation is completed. The cycles are repeated
until some stopping criterion is reached, like having satisfactory solution or
reaching execution time limit.

14



4.1.1 Simulation, Results and Discussion

Kapsalis et al. tried the above algorithm (with variations as mentioned)
on the B-problem set from [64]. In [64], there are five sets of graphs, set
A to set E, with increasing number of nodes and different node degrees.
In B-set, there is a total of 18 examples. Six examples are of 50-nodes
graph, three with average node degree 2.5 and three with average node
degree 4.0. The three examples of the same node degree differ in number
of destination nodes, where D consists of ~ 17%, ~ 25% and ~ 50% of
the total number of nodes in the graph. Similarly, six examples of 75-nodes
and 100-nodes graphs each, make the set of 18 examples. The graphs are
rather sparsely connected. The stopping criterion was set as either, (1) the
optimum result was obtained (optimum result is known for all the examples),
or (2) an execution time of 4000 seconds in Apple Mac IIfx was elapsed. The
algorithm outperform two well known heuristics, the shortest path heuristic
(SPH) [10], and the average distance heuristic (ADH) [15]. They found
that random initial population, roulette selection and replace-all strategies
work better in general. For all the B-problems in [64], the algorithm could
find the optimum solutions. Values of p,, and p. over a wide range gave
similar performances. Experiments with different initialization procedures
and selection mechanisms were also reported in [24], and found not to affect
the result strongly. Only in case of trimmed initial population, the result
sometimes gets trapped in the local minimum.

Discussion: The experiments were tried on simple problems of sparsely
connected graphs, with maximum of 100 nodes only. It is not clear how
it would work for bigger problems. The main weak point of the proposed
algorithm is the fitness evaluation. Simply merging the penalty term, which
is linearly proportional to the number of components L, and the cost of the
different component trees, is not the best approach. This proportionality
constant will be problem dependent, on the relative values of the edge costs.
With a graph, where edge costs varies over a wide range, this algorithm
will not be robust. Instead, a rank based selection, where first the solutions
are categorized according to the number of components (L), and within a
category ordering them according to the cost, would be more robust and
could perform better on wider varieties of problems.

15



4.2 The Work by Esbensen 1995

General considerations

We will discuss in details the work by Esbensen [63], which though compu-
tationally heavy, performs better on bigger problems. The main idea of the
algorithm is to use the popular Kou, Markowsky, Berman (KMB) heuristic
[11] for evaluating the chromosomes, and though costly, fitness evaluation
is more appropriate. This algorithm also exploits many other domain based
knowledge (from different heristics) to improve the efficiency as well as the
quality of results.

At the onset, a preprocessing on the original graph is done to reduce
its size. Standard genetic algorithm as described in Fig. 6 is used, with
the additional feature of using elitist model and domain specific knowledge
to filter chromosomes during genetic operations. In elitist model, the best
chromosome from earlier generation is preserved, if it is better than the best
of the current generation. At the end, one could preserve the best of all
generations. We will discuss the structure of the chromosome, and crossover
and mutation operations specifically designed in [63].

Preprocessing for Graph Reduction

This step has nothing to do with genetic algorithm, but reduces the size
of the graph and thus the computation time of further steps in genetic
algorithm. These reduction steps are adopted from [20], [27] and illustrated
in Fig. 8. The steps are as follows:

Step a: As shown in Fig. 8 (Step a), suppose there is a node v of degree 1
connected to a node w. If v ¢ D, then node v and edge e,, can be
deleted. Even if v € D, as ey, must be included in M StT, still node
v and edge ey, can be deleted and w included in D.

Step b: As shown in Fig. 8 (Step b), suppose there is a node v ¢ D of
degree 2 connected to nodes u and w. In that case, node v and edges
ey and ey, can be deleted and replaced by one edge e,,, whose cost
iS Cyy + Cyw- If an edge ey, already exists and ¢y < (Cyy + Cpw), then

only ey, should remain. Here c¢,,, represents the cost of path uw etc..

Step c: An edge ey, is to be deleted when the cost of the shortest path (sp)
from u to v i.e. copuy) < Cup-

Step d: Suppose v € D and its closest neighbor is u and the second closest
neighbor is w as in Fig. 8 (Step d). If there is no such w, assume

16



Cyw = 00. Let there is another node z # v and z € D, which is closest
to u. If (Cup + Csp(uz)) < Cow, then the sp(zu) and ey, can be replaced
by a single edge of cost (cuy + Csp(uz)) as shown in Fig. 8 (Step d).
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Figure 8: Steps of graph reduction

To perform the above steps, and during fitness evaluation using KMB, short-
est path between different nodes are frequently needed. Therefore, the dis-
tance graph D(G) is computed initially using Floyd-Warshall’s algorithm
[3] and dynamically modified as the reduction proceeds. The above steps
are performed repeatedly until there is no further reduction in graph size.
There is no indication in which order the above steps should be performed
to have best results. In [63], they repeatedly executed the cycle of sequence
of step c, step b, step d, and step a.

KMB Heuristic

At the heart of Esbensen’s work [63] is the heuristic proposed by KMB
[11], which is used to evaluate different genotypes (chromosomes). KMB
algorithm can be stated in the following five steps:
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1. Construct the subgraph G; of D(G) induced by D.
2. Compute M SpT T; of GG4.

3. Replace the shortest paths in 77 by the edges of the original graph G
to obtain Gs.

4. Compute M SpT T of Gs.

5. Delete, until possible, all nodes in 7% that are ¢ D and with degree 1,
to obtain M StTG.

The most expensive is step 1 for the construction of D(G). But, during
graph reduction D(G) is constructed. If D(G) is not available, the worst
case time complexity of KMB is O(K x N2), where |D| = K, and |V| = N.

The Genetic Algorithm

Genotype, phenotype and decoding: The genotype, similar to that
in KRS [24] work, is a string of 1s and 0s representing the nodes of the
graph. A 1 means the node is selected for Steiner tree. Let the set of these
nodes are U. The corresponding phenotype, i.e. the actual realization of
the Steiner tree, is constructed by KMB using U U D as the set of vertices
to be spanned. Thus, every time a genotype is to be evaluated for fitness,
KMB is to be run. The other difference from KRS is the construction of
the genotype (chromosome). In KRS, the bit position defines the particular
node it represents. Here, to realize other genetic operations defined in this
work, the meaning of a genotype has to be independent of the order of bits
in it. Every bit of the genotype is associated with a tag, fixed with it,
representing the node label of G, as shown in Fig. 9. The two genotypes
in Fig. 9(b) and Fig. 9(c) are interpreted to exactly same phenotype and
same solution of the problem. Thus, phenotype is invariant to reordering of
tuples in genotype.

Some additional filtering of genotype is done using problem domain
knowledge. It is known that, in the optimum Steiner tree the number of
Steiner vertices would at most be (|D| — 2). If (|[D| — |U|) < 2, then the
excess |U| — (|D| —2) number of 1s are randomly selected and changed to 0Os
in the genotype. This filtering is performed after initialization and at every
generation (after crossover and mutation), on all members of the population.

Next comes the decoding and fitness evaluation of a genotype. Though
other faster heuristics e.g., shortest path heuristic [10], average distance
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Figure 9: The structure of the genotype

heuristic [15], were available, KMB is chosen to decode the genotype for the
following reasons:

1. The result quality of KMB outperforms other heuristics and provides
a worst case lower bound on the solution quality.

2. It can decode any set of Steiner vertices (represented by the genotype)
to a valid Steiner tree. Thus the confusing penalty term for invalid
solutions could be avoided.

Fitness calculation: In the population ® = {¢g, ¢1,...,¢p_1}, for
every member ¢;, the corresponding Steiner tree and its cost is determined
by running KMB. The members are then ranked with highest cost first (i.e.
the least fit first) and the lowest cost last. The fitness of the " ranked
member is computed as 2 X i/(P — 1), where P = |®| is the population
size. Fitness calculation from ranking rather than from absolute value of
the solution quality is preferable [65], because it facilitates better balance of
exploration of the search space and selection pressure.

Crossover, mutation and inversion operators: The crossover oper-
ation is same as classic one point crossover between two randomly selected
members of the population, say ¢; and ¢;, at a randomly selected crossover
point. As the different ordinal positions of two genotypes represent different
nodes of the graph, they have to be rearranged first so that they both con-
form for crossover i.e., the ordinal positions describe the same nodes. This is
explained in Fig. 10. Here tuples in ¢; are rearranged. |D| = 5 is assumed.
After crossover, at crossover point 4, the number of 1s in ¢; become more
than (|D|—2), and was required to be filtered to reduce the number of 1s to
(|D|—2). Please note that, nodes in D are not included in the chromosome,
and nodes in (V — D) are labelled from 0 to 7, just for convenience.
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Figure 10: Crossover operation and subsequent filtering. Here, |D| = 5,

crossover point = 4

For mutation operation, a bit is flipped with a low probability of pu¢-
If, due to mutation, the number of 1s in genotype crosses (|D| — 2), filter-
ing is done. In addition to mutation, an inversion operation is performed
with probability p;n,. If the genotype is considered as a ring and tuples are
shifted and rotated by any random number of positions, the phenotype in-
terpretation remains the same. But the genotype and the result of crossover
changes. This shift and rotation of tuples in genotype is called inversion and
it facilitates more exploration of the search space.

Overall algorithm: Now all the genetic operations defined, the overall
execution of the algorithm is as follows.

01 Graph reduction;

02 Create ¢; (i from 0 to (P — 1)) members of the initial population ®;
03 Evaluate and rank members of ¢ using KMB;

04 Save A = best of ®;

05 Repeat until stopping criterion is satisfied;
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06 Take pairs randomly from @, cross them over and save in @’
until all members of ¢ are crossed over;

07 Take fittest P members from ® U ' to make the new ®;
08 Execute mutation and inversion operations;
09 Save A = best of {A\} U ®;

10 Optimize A\ and report the result;
4.2.1 Simulation, Results and Discussion

This algorithm was tested on set-C, D and E graphs from [64], where set-
C consists of 500 nodes graphs, set-D of 1000 nodes graphs, and set-E of
2,500 nodes graphs. FEdge costs are random integers from 1 to 10. The
population size was fixed at 40, p;: = 0.005 and p;p, = 0.1. When there
is no improvement of the best solution over consecutive 50 generations, the
algorithm stops.

Discussion: In most of the experiments, the algorithm could find the
optimum solution about 80% of the time it was executed and the result was
within 1% of the optimum solution in more than 90% of the trials. These
percentages are a little less for the big graphs in set-E. The quality of result
was better or at least as good as the best of the heuristic algorithms. Though
different algorithms were run on different machines, the execution time of
GA was comparable to heuristics. This work concludes beyond doubt that
GA is a high performance, robust and efficient algorithm for solving M StTG
problem, when the domain knowledge of the problem is effectively used.

5 Solving CM StTG Problem by Genetic Algorithm

The only work reported to use GA to solve CMStT'G is from Zhang and
Leung in 1999 [36]. They defined a new orthogonal genetic algorithm (see
also [66]), which they found to be more efficient and able to deliver better
results, compared to traditional genetic algorithm.

5.1 Orthogonal Crossover and Orthogonal Genetic Algorithm

What is orthogonal array?

The origin of the idea is from a concept for designing experiments in efficient
fashion [67]. Let us consider that for a given experiment there are k different
factors involved, and each factor can take n different values in a particular
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(ascending/descending) order. For an exhaustive search for the best com-
bination of different factors and their respective levels, we need to try nF
experiments. In orthogonal design [67], only a few orthogonal combinations
corresponding to orthogonal array are to be tried, and it is proved that these
selective combinations are good representatives for all the n* possibilities.

For example, for a three factors two levels experiment, the four orthog-
onal arrays L4(2%) are shown in Fig. 11, and listed in Table. 1. The four
combinations in Table. 1 is a good representation of 2% possibilities. Loca-
tion of these four points in the 3-dimensional (3 factors) space is shown by
the solid circles in Fig. 11.

factor 2
2,2,1)
1,22 |
LLle | | >
factor 1

&

/ 2 1,2
factor 3

Figure 11: Orthogonality of the orthogonal array L4(2?)

Combination | Factor 1 | Factor 2 | Factor 3
1st. level 1 level 1 level 1
2nd. level 1 level 2 level 2
3rd. level 2 level 1 level 2
4th. level 2 level 2 level 1

Table 1: Orthogonal array L,(23) for three factors at two levels

For a four factor three level situation, the Lg(3*) orthogonal array is
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listed in Table.2. These array combinations, L4(23) and Lg(3%), is the basis
in defining orthogonal crossover.

Combination | Factor 1 | Factor 2 | Factor 3 | Factor 4
1st. level 1 level 1 level 1 level 1
2nd. level 1 level 2 level 2 level 2
3rd. level 1 level 3 level 3 level 3
4th. level 2 level 1 level 2 level 3
5th. level 2 level 2 level 3 level 1
6th. level 2 level 3 level 1 level 2
Tth. level 3 level 1 level 3 level 2
8th. level 3 level 2 level 1 level 3
9th. level 3 level 3 level 2 level 1

Table 2: Orthogonal array Lg(3*) for four factors and three levels

Chromosome encoding and decoding: The GA approaches discussed
till now used binary bits in chromosomes to represent nodes of the graph.
Here the chromosome consists of bit string of length [, where [ is the number
of edges in the graph. The i** bit represents the i'® edge of the graph.
If a particular bit is 1, the corresponding edge is selected for making the
Steiner tree. Not all combinations of edges would form a tree connecting
the source node to all destination nodes. To convert any chromosome to
a valid Steiner tree, the subgraph induced by the selected edges is found.
Then the spanning tree for the subgraph is created, and the unconnected
nodes of D are connected by simple graph search method [68].

Orthogonal crossover based on orthogonal array: In genetic algo-
rithm, the crossover operation is responsible for creating different combina-
tions of the individual chromosomes to explore intermediate regions of the
search space. But splitting chromosomes at any arbitrary point, and com-
bining, may be wasteful and definitely computationally heavy. Thinking
in the line of orthogonal array for designing experiments, Zhang and Leung
[36] proposed this new orthogonal crossover, which they claimed and showed
through experiments to be more effective way of exploring the search space,
at least for this problem.

In conventional crossover, two chromosomes are combined. In orthog-
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onal crossover it may be 2 or more. In general, if we take n levels and k
factors and corresponding L, (n*) orthogonal array, then we will be consid-
ering crossover among 71 chromosomes corresponding to n-levels, producing
m number of offsprings. Every chromosome is divided into ¢ number of
genes p(1) to p(q). q is arbitrarily set, where ¢ > k. As far as possible,
the genes are set equal in length. An onto mapping from particular gene
p(i) to one of the k factors is decided arbitrarily. Now every part of the
chromosome i.e., the genes, could be mapped to one of the k factors. Out of
n parents and m offsprings, j number of members are selected to the next
generation. In [36], this way of combining chromosomes is named as n.- to- j
orthogonal crossover.

The idea of orthogonal crossover is best explained by an example. Let
us use Lg(3*) as shown in Table. 2 to define the different offsprings. As
n = 3, the crossover here involves 3 parent chromosomes. Let us divide
every chromosome in 5 genes, namely p(1), p(2), p(3), p(4) and p(5). So,
g =05,k =4 and g > k is satisfied. For example, if the chromosome is
of length 28 bits, then the first 6-bits make the p(1) gene, the 7" to 12
bits form p(2) etc., and the 5 gene is formed by the last 4-bits. This
division is arbitrary and has no fixed rules. Let us denote the three parent
chromosomes as follows:

Xy = (x1,1,X1,2,X1,3,X14,X1,5)
Xy = (x2,1,X22,X23,X24,X25)
X3 = (x3,1,X32,X3,3,X3,4,X35)

The three chromosomes X1, X2 and Xg are the three levels(n = 3). Because
the number of genes are 5, to be able to use compositions suggested in Lg(3*),
where there are only 4-factors (k = 4), the 5 genes are mapped as follows:

p(1) = Factor 1, p(2) — Factor 2, p(3) — Factor 1, p(4) — Factor 3, p(5) — Factor 4

In fact, this mapping could be done in many different ways. The off-
springs will have the same number of genes as their parents by combining
factors (genes) from different levels (chromosomes). According to the above
gene to factor mapping, gene p(1) and p(3) both are to be chosen from the
chromosome (level entry) appearing in the first column of Table. 2 i.e., fac-
tor 1. For example, because row 6 of Lg(3%) is (2 3 1 2), the sixth offspring
will be from parents (2 3 2 1 2), and it will be constructed as follows:

Og = ( p(1) from X,, p(2) from X3, p(3) from X, p(4) from X;, p(5) from Xa)
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The nine offsprings are:

01 = (x1,1,%X1,2,X1,3,X1,4,X1,5)
O2 = (x1,1,%X2,2,X1,3,X24,X25)
O3 = (x1,1,X3,2,X1,3,X34,X35)
04 = (x2,1,%X1,2,X2,3,X24,X35)
O5 = (x2,1,%2,2,X2,3,X34,X15)
O¢ = (x2,1,%X32,X23,X14,X25)
O7 = (x3,1,X1,2,X33,X34,X25)
Os = (x3,1,%X22,X33,X1,4,X35)
Og9 = (x3:1,%X32,X33,X24,X1,5)

Some of the offsprings could be same as the parent. Here Q4 is same as Xj.
O is therefore a valid solution of the problem. For other newly generated
offsprings, which may represent invalid solutions of the problem, have to be
checked and repaired to a valid solution as described earlier in the paragraph
Chromosome encoding and decoding. Now the fitnesses of the repaired
offsprings are calculated from their respective Steiner trees.

Fitness calculation and selection: Once the Steiner tree from a chromo-
some is found, its fitness F' is evaluated. Here F' has two terms f; and fs.
Term f; represents the total cost of the Steiner tree. Term f5 is the sum of
the degrees of violation of the delay constraint (A) by different paths from
source s to destinations v € D. Thus,

fo= Z maz {0, (Path delay from s to v) — A}
veED

If a path delay is < A, its contribution to fo is 0. Because it is related to
the constraint, fo is more important. Between two chromosomes and their
corresponding Steiner trees 7" and T" with fitnesses f7, f4 for T', and f{, f
for T", T' is better when,

1. f} < f¥ i.e. the delay violation in 7" is less, or

2. f4 = f4 and f{ < f{ i.e., when both have same delay violation (or
both satisfy the constraint), the tree with less cost is a better fit.

Of course, in this way absolute value of fitness to any individual chromosome
can not be assigned. But we can compare any two and rank them in order
of fitnesses.
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Next is the selection. Out of n parents m offsprings are generated. From
these (n + m) chromosomes, one possibility is to select the best j. Another
possibility is to select j chromosomes from (n+ M) not deterministically, but
with greater probability for better chromosomes by ranking and tournament
selection [56]. The selection can even be from offsprings only. After selection
of j members, mutation is performed by flipping a randomly selected bit
(with a small probability) from a randomly selected chromosome. Repair is
done when necessary.

Orthogonal Genetic Algorithm

We now explain the overall operation of the orthogonal GA. Suppose the
population size is P. Since from n parents j offsprings are selected to the
next generation, this orthogonal crossover and selection operation is per-
formed P/j times, so that the population size remains constant over gener-
ations. The genetic algorithm steps are:

I Initialization: An initial population {X;i,Xa,...,Xp} is created
with random bits of Os and 1s. They are repaired to make them valid
solutions of the problem.

IT While ( stopping criterion is not met ) repeat the Steps III to V.

IIT Do P/j times n-to-j Orthogonal crossover. Randomly select n par-
ents from the whole population and perform orthogonal crossover P/j
times to get members of the next generation.

IV Each chromosome in the new generation undergoes mutation with a
small probability p,,. Flip every bit in the chromosome selected for
mutation with a small probability py. Thus the probability that a bit
will be mutated is p,, X p;.

V Repair invalid chromosomes to make them valid solutions.

5.2 Simulation, Results and Discussion

The algorithm was tried on two sets of problems as follows:

1. Network with 50 nodes and 100 edges. |D| is varied from 5 to 12 in
steps of 1, making 8 experimental set-ups.

2. Network with 80 nodes and 200 edges. |D| is varied from 5 to 12 in
steps of 1, making another 8 experimental setups.

26



These problems were generated using method proposed in [69], which creates
the network topology, the link costs, a set of source and destination nodes,
and cost of different edges. It also tells the optimal steiner tree and its cost.
The point that is lacking with respect to the above CM StT'G problem is
that the delay for edges are not assigned. A random delay is assigned to
every link, and then the delay to different destinations for the minimum
cost Steiner tree is calculated. The delay constraint A is set equal to the
maximum delay from source to different destinations in the minimum cost
Steiner tree. Now the problem including the constraint is defined. At the
same time, the optimum solution is also known.

Traditional genetic algorithm, orthogonal genetic algorithm with L4(23),
and with Lg(3*) were simulated and tried on two sets of 8 problems each.
Population size is fixed at 30 for the first set of 50-nodes problems, and
80 for the 80-nodes problems. The stopping criterion was the maximum
number of generations, which was set to 400, 300 and 100 for traditional
GA, L4(2%) orthogonal GA, and Lg(3*) orthogonal GA respectively. This
ensures that the required execution time for different versions of GA are
similar. j was set to 2, and the best two of all the offsprings were copied
to the next generation. p, = py = 0.1 was set, such that every bit would
be flipped for mutation with a probability of 0.01. The algorithm quality
is judged by the percentage of runs for which the Steiner tree cost reaches
within 20%, or 10%, or 5%, or 2% or 0% of the known optimal solution. The
results show that orthogonal Lg(3*) performs much better than orthogonal
L4(23), which again performs much better than traditional GA.

Discussion: By orthogonal crossover the speed gain is appreciable i.e.
better solutions were created in less number of generations. Another im-
portant difference is in the selection method. In conventional GA, selec-
tion involves all the members of the population, and is a difficult issue for
distributed implementation. Here the selection is done only on the set of
chromosomes involved in the orthogonal crossover and offsprings generated
from them. Therefore, distributed implementation of crossover, mutation
and selection is natural and easy.

Orthogonal crossover is a kind of multiple parents multiple point crossover.
But, by restricting the crossover points at longer intervals (of genes), the
diversity of the offspring chromosomes are restricted. In orthogonal design
[67] the factors are well defined. But here the slicing of the chromosomes
to different genes are arbitrary. The logic of the orthogonal design does not
hold good in true sense. On the other hand to improve diversity, if the gene
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length is shortened and larger values for k are tried, the computational load
will be too heavy. Thus it is obvious that Lg(3*) gives better result than
L4(23), but at the cost of more computation load, when equal number of
generations are executed.

6 Solving M EStT Problem by Genetic Algorithm

The only work [44] proposed to solve M EStT was due to Hesser, Manner
and Stucky in 1989. The approach is traditional with some efficiency gained
through use of problem domain knowledge. They compared their algorithm
with simulated annealing and average distance heuristic (ADH) [15].

6.1 Chromosome Structure and the Genetic Algorithm

Crossover
point
A

X . | Y - X . ! Y oo X - | Y =
coordinate coordinate coordinate' coordinate | coordi nate' coordinate| *"**"*

Crossover
range

Figure 12: Chromosome structure

The chromosome structure is shown in Fig. 12. It cousists of (z,v)
coordinate values of a fixed number of Steiner points. Using the knowledge
that the number of Steiner points could at most be (|D| — 2), the length is
fixed to (|D| — 2). The range of x- and y - coordinates are determined from
the span of site points. Number of bits to represent a coordinate value,
along with the span of the original site points, determine the precision of
the resulting Steiner node locations. A longer bit string would deliver results
with higher precision, but at the cost of more computation time. In [44], 6
bits were used. Therefore the precision of the result is range/2°.

Fitness calculation: An individual chromosome represents the posi-
tions of a set of (|D| — 2) Steiner points. For all members of the population
of size P, the corresponding Steiner trees are constructed, and their costs
calculated. The fitness F; of an individual, say i** member, is
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Fi = max. of {Cl,CQ, - .,CP} - Ci (1)

C; is the cost of the tree constructed by decoding the iy, chromosome. The
worst chromosome will have 0 fitness. Lower tree cost will give higher fitness.

Crossover and mutation: Every chromosome is tried for crossover
with a probability p./2. If the chromosome is selected for crossover, its
partner is selected from the rest of the population with uniform probability.
As shown in Fig. 12, crossover is one point, selected uniformly over the whole
length of the chromosome, and its range of execution is over a single x- or
y - coordinate value. The probability of crossover p. is fixed at 0.5.

The mutation operation flips a bit with a fixed probability of 0.01, and
is tried on every bit of every chromosome.

Selection: Suppose the current generation is designated by g and the
next generation by (g+1). If the i» member of the population ¢(i) appears
with frequency h;(g) in the current generation, its fitness being Fj, and
the average fitness of the whole population is (F), then in the subsequent
generation the same member will appear with a frequency h;(g + 1) where,

hilg +1) = é—i)-hi(g)

This selection is called roulette selection [55].

Population size: Hesser et al. proposed [44] a rule of thumb to deter-
mine optimum population size, in line with the idea proposed by Goldberg
in [70]. Goldberg’s report says that, if the number of binary bits in the chro-
mosome be B, the population size should be about 1.65 x 202'B_ For a 25
Steiner points problem it would be too large to implement. The authors cal-
culated and plotted the number of different Steiner trees possible for various
population sizes. They found that when the population size ranges between
30 to 110, there is the largest increase in the number of different structures.
Following similar arguments as in [70], they found that a population size
between 30 to 110 would work well. They fixed it at 50.

Heuristics: The following problem domain knowledge is used to im-
prove the efficiency of the GA: (1) The number of Steiner points were limited
to (|D] —2). (2) The fact that the Steiner points in M EStT are of degree 3
is used. (3) The Steiner nodes with degree 2 are removed, and the two nodes
on both sides are directly joined. Steiner nodes of degree > 3 are left as it
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is. (4) Finally a local optimization on the solution is done by shifting every
Steiner point locally, so that its edges are arranged symmetrically, where the
shift leads to a shorter tree [38]. They have found that by applying these
heuristics, the GA convergence is speeded up by 20 times. This, of course,
means that otherwise also GA could find the same quality of results, but
would take much longer time and many more generations.

6.2 Simulation, Results and Discussion

Experiments were done with a grid network of 5 x 5 nodes. They varied the
probability of crossover p. and mutation p,,. As is obvious, it was reported
that very small values for these probabilities prolong the convergence, and
on the other hand large values would destroy good chromosomes at the later
stage. They also reported that roulette selection works better than ranking.
The selection pressure could be controlled by changing the offset value from
the maximum tree cost of all members (as in Eq. (1)), to some higher value.
They also found experimentally that the population size between 30 to 100
members is the best choice, as predicted. It should be noted here that
instead of simple binary coding, a Gray code interpretation of the bitstring
would be more efficient. The reasons are explained in [71].

7 Solving M ERStT Problem by Genetic Algorithm

The only GA based work [53] proposed to solve M ERStT was due to Jul-
strom in 1993. The design of the chromosome for his work is interesting. The
basic idea is from Cayley’s counting of different spanning trees and Priifer’s
encoding of them [72](pp.140-145). Though the algorithm does not ensure
global optimal solution, even not as good as many heuristic approaches [51],
[73], [52], the encoding of chromosome is interesting to be noted.

7.1 Chromosome Structure and the Genetic Algorithm

Basic Idea

The basic idea of [53] is illustrated in Fig. 13. In 1875, Arthur Cayley
counted the number of spanning trees for a n-node complete graph as n(*=2).
One of the most elegant encoding algorithm for the different spanning trees
was due to H. Priifer, and is called Priifer sequence. The encoding algorithm

is as follows:

Input: A spanning Tree with vertex-labeling.
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(@ (b)

Figure 13: Priifer’s encoding of Spanning tree

Output: Prufer sequence of length (n — 2).
Initialize: Priifer sequence to NULL.
for i =1 to (n—2)
Let v be degree 1 vertex with smallest label.
Let s; be the label of the only neighbor of v.
Delete v and its edge from Tree. Add s; to Priifer sequence.
Return Priifer sequence (s1, s9, ..., S(n—2)>-

If we apply the above algorithm on the spanning tree of Fig. 13(a), we get
a sequence (6,2,2,6,6) and for the spanning tree in Fig. 13(b) the sequence
is (4,2,1,7,5). The number of times a node appears in the sequence is one
less than its degree, as expected. The (n—2) positions in the sequence could
be occupied by any of the n-labels of n nodes, where every such sequence
represent a different spanning tree. Thus the number of different spanning
trees is n(®=2).

Following is the decoding algorithm from Priifer sequence to tree.

Input: The Prifer sequence @ of node labels of length (n — 2).
Output: The n-vertex tree.
Initialize: A list L of n node labels in ascending order.
Initialize: Forest F' of n isolated vertices, labeled 1 to n.
for i =1 to (n—2)
Let k be the smallest entry such that k£ € L, but k ¢ Q.
Let 5 be the first member in Q)
An edge joining k to j is added to F'.
Remove k from L and j from Q.
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Two ramaining nodes of L are joined to get the final tree.

When the Priifer sequence is Q@ = (4 2 1 7 5), using the decoding al-
gorithm we could construct the tree of Fig. 13(b) by adding edges in the
following sequence:

3—4, 4-2, 2-1, 1-7, 6-5, 5-7

Now, to construct a rectilinear Steiner tree, a direct link between any
two nodes has to be converted to horizontal and vertical segments for which
the direct link is a diagonal. For every edge this could be done in two ways,
as drawn by thin solid and dashed lines for the edge between nodes 1 and 7
in Fig. 13(c). By convention, let us consider that when the Steiner point is
on the left of the link it is represented by a 0 (the dashed line in Fig. 13(c)),
and when on right it is a 1 (the thin solid line in Fig. 13(c)). For every
spanning tree, as we have (n — 1) links, 2(n=1) guch rectilinear Steiner trees
are possible. Thus in total 2= x n("=2) different rectilinear spanning
trees are possible for a n-node graph. In Julstrom work, he tried to find
the minimum of all such rectilinear Steiner trees. Though it may not be the
optimum M ERStT, it is a good approximation [49]. Such rectilinear trees
are encoded in chromosomes as explained below.

Chromosome structure: The chromosome consists of two parts

1. (n — 2) symbols from n possible node labels representing a Priifer
sequence and thus a particular spanning tree.

2. (n—1) number of Os and 1s represting right or left choice of rectilinear
representation for the (n — 1) links of the spanning tree.

To distinguish between node labels’ symbols from 0/1, we label the nodes
with alphabets, shown in brackets, in Fig. 13(c). Node 1 becomes a, node 2
b and so on. The chromosome corresponding to the rectilinear Steiner tree
in Fig. 13(c) (thin solid lines) is:

(1d0blalg0Oel)
While decoding the spanning tree defined by (d b a g e), edges are added
in sequence as c—d, d—b, b—a, a—g, f —e, e —g. The first 1 in the

chromosome denotes that the Steiner point is on the right side of the edge
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¢ — d. Similarly, the next 0 denotes that the Steiner point is on the left of
the edge d — b, and so on.

Genetic Operations

Crossover: By crossover operations we join parts of two solutions in a
meaningful way to form a new solution. Here the genotype, i.e. the chro-
mosome representation, and phenotype, i.e. the actual realization, are quite
different. If conventional crossover is done, though the resulting offsprings
will still be valid solution of the problem, they may be completely different
from their parents. They will not combine parts of their parents, which
is the basic idea of search in GA (building block hypothesis). Crossover
will result in something like mutation, jumping to a new location far away
from both parents. So, a new crossover method, which enable to retain parts
from the parent trees, and generate a single offspring, is defined. It is named
spanming tree crossover.

Spanning tree crossover is not done on genotypes but on phenotypes, i.e.
the actual trees. The idea is to retain common parts from both parents as
much as possible. If two parents have common edges, and the correspond-
ing Steiner points are on the same side, those rectilinear edges are copied
to the offspring. If the steiner points are on different sides, any one of the
two is chosen randomly. The rest of the offspring tree is formed by select-
ing randomly from the remaining rectilinear segments of the parents. Any
cycles created should be broken. Thus, the crossover operations are not on
chromosomes but on substructures of trees, and computationally heavy.

Mutation: Mutation operation is like in traditional GA. It modifies the
symbol at any position with a low probability of 0.01. For the 0/1 entries, it
flips. For the node labels, mutation could change a label to any of the rest
(n — 1) possibilities randomly with uniform probability.

Overall execution: The initial population is created by random com-
bination of the symbols. Crossover and mutation are performed on the pop-
ulation with probabilities of 0.4 and 0.01 respectively. As explained, both
crossover and mutation produce a single new chromosome. After crossover
and mutation, to keep the population size constant,

1. Duplicated members are deleted.

2. The tree lengths for different members are calculated. Chromosomes
corresponding to longer trees are deleted with higher probabilities.
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This creation of new chromosomes by crossover and mutation, and shedding
of bad members to maintain constant population size are repeated. Other
more deterministic shcemes for deletion, like deleting only worst members,
were also tried.

7.2 Simulation, Results and Discussion

The experiments were done with a set of 32 randomly set points. The
author tried different variations of population size and different crossover
operations. Every experiments were performed such that 50,000 different
chromosomes were created during the whole execution of the algorithm,
and thus took more or less the same computation time, even though the
population size was different. Traditional two-point crossover, one-point
crossover and the proposed spanning tree crossover were tried. Spanning
tree crossover could produce better (about 10%) results, whereas one-point
crossover was only slightly better than two-point crossover. Population size
of 40 produced the best Steiner tree, when different population sizes of 30,
40, 50, 60, 70, 80, 100, 150, 250 and 500 were tried. Of course, as mentioned,
the total number of different chromosomes created during the whole period
of execution was fixed at 50,000.

Hwang in [49] proved that no rectilinear Steiner tree could be shorter
than 2/3 rd the distance of a minimum rectilinear spanning tree (M RSpT)
on the same points. It is easy to find the minimum spanning tree using
Prim’s [4], or Kruskal’s [5] algorithm. The distance of minimum rectilinear
spanning tree is obtained, when the distances of edges are not measured as
V(@ — ) + (i — )%, but as [z — 2;)| + (g — y)|- Here (@) and
(z,y;) are the rectilinear coordinates of the two connected nodes. Thus it
is easy to calculate a lower bound for the M ERStT, which is 67% of the
MRSpT. Most of the hueristics could achieve on an average around 92%
of the M RSpT for most of the problems tried. But the best M ERStT
for the 32-point problem, found by this algorithm, is only 99% of M RSpT.
The average is 104.5%. It is seen that for smaller problems it works better,
though the overall performance is worse than all the heuristics. On an
average, it is even worse than M RSpT. As M RSpT is easy to find, the
proposed algorithm is of little practical use.

34



8 Discussion

In this article, we have covered all important genetic algorithm based ap-
proaches to solve different Steiner tree problems. Optimum Steiner tree is
a constraint optimization problem. Straightforward use of genetic opera-
tions (crossover and mutation) may generate invalid solutions that does not
comply with the required constraints. If invalid solutions are allowed in the
chromosome, we invite two main problems: (1) the search space becomes
too large to be able to find optimum solution, (2) it is difficult to assign
proper fitnesses (i.e. penalties) to the invalid solutions. In Kapsalis et al.
[24] work, one weak point is the fitness calculation. There constraint vio-
lation part (number of tree components) and optimization part (tree costs)
were linearly added. In general, ranking the chromosomes, where constraint
part is given more priority than optimization works better, as done by Zhang
and Leung in [36]. Yet, better approach is to repair invalid solutions to their
nearest valid solutions. This requires execution of some heuristic methods
that uses problem domain knowledge, and therefore computationally costly.
Heuristic algorithms using problem domain knowledge were extensively used
by Esbensen in [25]. The quality of result was better or at least as good as
the best heuristic algorithm, and the execution time was comparable. This
work concludes without doubt that GA is a high performance, robust, and
efficient algorithm for solving M StT'G problem, when the domain knowledge
of the problem is effectively used.

Another important aspect of GA is to allow proper exploration of the
search space during early generations, and quickly settle down to the opti-
mum at later generations. The proposal of orthogonal crossover in [36] is
to expedite this exploration. The crossover is designed so as to ensure that
the whole problem domain is explored in a regular manner. The idea is
adopted from proper designing of experiments [67]. The questionable point
is that, by using longer genes the exploration is restricted to some extent.
Moreover, the cut points of the chromosomes to different genes are arbitrary
- not well defined as in case of real experiments discussed in [67]. It is not
clear why the logic of orthogonal experiment design would work well here
too. For different optimization problem, orthogonal GA may or may not
work well, depending on the nature of the problem domain. The success
of the idea, for the Steiner tree problem, is shown through experiments,
where the speed gain using orthogonal crossover is appreciable. Another
added advantage is the way the selection is done. Only the set of chromo-
somes involved in the orthogonal crossover, and offsprings generated from
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them, are considered for selection. Therefore, distributed implementation of
crossover, mutation and selection is natural and easy. Thus, the increased
computational cost for orthogonal crossover could be easily taken care of by
a distributed implementation.

Other important aspect of GA is how the phenotype (the solution of the
problem in the original form) is encoded into genotype i.e. the chromosome.
When the original solution is in pseudoboolean, as in [24] and [25], where the
solution is either to select a node or not and naturally translates to 1 or 0,
a simple boolean encoding is sufficient. In [44], the chromosome represents
a set of real decimal numbers. They converted these decimal coordinates to
base-2 binary numbers. Presently, it is common practice to use Gray code
interpretation of the bitstring segments, an idea first indicated by Bethke in
his Ph.D. thesis in 1981. It would have been more advantageous for their
work too. The reason is that, in Gray code two consecutive numbers differ
by only one bit [71].

Another important aspect of GA is the scaling of the fitness values, by
which one can control the exploration and selection pressure. In [44], it is
done simply by adding some positive number to the right side of Eq. (1).
This would squeeze the range of fitness variation (as percentage of maximum
fitness), and help in better exploration of the search space.

Julstrom’s work [53] is a novel example of the varieties of ways a geno-
type could be designed. The algorithm basically searches derivatives from
the minimum spanning tree, and the quality of result is poor. Though com-
putationally efficient, on an average the result is even poorer than M RSpT,
for which there is very simple and fast heuristics. So the usefulness of [53]
is questionable, yet it is interesting to note.

We have covered most of the important genetic algorithm based works to
solve Steiner tree problem. Though all of these works are interesting in their
own right, they are yet to reach the efficiency of the heuristic algorithms for
large problems, and there is ground for further improvements. Only the work
by Esbensen on M StT'G performs well even for very large graphs. It should
be mentioned that it borrowed ideas from heuristic algorithms and exploited
various problem domain knowledge. In other works too, it has been shown
that the use of problem domain knowledge improves efficiency. Thus, the
general conclusion is that, a hybrid approach would be more efficient and
could compete with heuristic algorithms.
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